Suppr超能文献

Laser-feedback measurements of turtle basilar membrane motion using direct reflection.

作者信息

O'Neill M P, Bearden A

机构信息

Department of Molecular and Cell Biology, University of California at Berkeley 94720, USA.

出版信息

Hear Res. 1995 Apr;84(1-2):125-38. doi: 10.1016/0378-5955(95)00018-y.

Abstract

In mammalian hearing, the frequency-dependent spatial pattern of movement in the basilar membrane/organ of Corti complex forms the basis of frequency discrimination. This is not necessarily the case in lower vertebrates; the turtle, for example, has an electrical resonance mechanism in its auditory receptor cells that varies in best frequency from cell to cell. But how much, if any, of the frequency separation by the turtle is done mechanically by the basilar membrane complex? Attempts to find an investigative approach that avoided placing objects on the basilar membrane led to the rediscovery of laser-feedback interferometry. Laser-feedback interferometric investigations of the vibrational amplitude and phase of the turtle basilar membrane in response to imposed nanometer displacements of the eardrum reveal that the membrane reflects the broadly-tuned middle-ear filter characteristics. Phase-angle measurements of the basilar membrane as a function of frequency, and the best frequency of the obtained amplitude tuning curves, did not vary as a function of position within each specimen. Input-output functions of the basilar membrane were generally linear. The middle ear demonstrates a negative gain of 2-6 while the central region of the basilar membrane has a positive gain of 4-18 dependent on location and biological variability.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验