Suppr超能文献

Inner medullary external osmotic driving force in a 3-D model of the renal concentrating mechanism.

作者信息

Thomas S R, Wexler A S

机构信息

Institut National de la Santé et de la Recherche Médicale Unité 323, Necker Faculty of Medicine, Paris, France.

出版信息

Am J Physiol. 1995 Aug;269(2 Pt 2):F159-71. doi: 10.1152/ajprenal.1995.269.2.F159.

Abstract

The mechanism by which the renal medulla establishes and maintains a gradient of osmolarity along the corticomedullary axis, especially in the inner medulla, where there is no active transmural flux out of the ascending limbs of Henle, remains a source of controversy. We show here that, if realistic values of urea permeability in the inner medullary descending limbs and water permeability in the upper inner medullary section of the collecting ducts are taken into account, even a model including the three-dimensional vascular bundle structures [A. S. Wexler, R. E. Kalaba, and D. J. Marsh. Am. J. Physiol. 260 (Renal Fluid Electrolyte Physiol. 29): F368-F383, 1991] fails to explain the experimentally observed inner medullary osmolality gradient. We show here that this failure can be overcome by application of an external osmotic driving force, an idea recently revived by J. F. Jen and J. L. Stephenson (Bull. Math. Biol. 56: 491-514, 1994) in the context of a single-solute, single-loop central core model. We show that inclusion of such an external driving force with a value equivalent to at least 100 mosM of inner medullary interstitial osmolytes in the three-dimensional model of Wexler et al. accounts for a physiological osmolality gradient, even in the face of realistic permeability values. Furthermore, inclusion of the external driving force makes the model less dependent on the positions of descending and ascending limbs of Henle with respect to the collecting ducts. In an effort to assess whether there is any experimental basis for osmolytes, we show that a significant amount of extra inner medullary interstitial osmolytes is plausible, based on extrapolation from existing experimental data.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验