Suppr超能文献

横断面调查中的聚类和中观变量:波斯尼亚危机期间粮食援助的一个实例。

Clustering and meso-level variables in cross-sectional surveys: an example of food aid during the Bosnian crisis.

机构信息

Centro de Investigación de Enfermedades Tropicales, Universidad Autónoma de Guerrero, Calle Pino, El Roble, Acapulco, México.

出版信息

BMC Health Serv Res. 2011 Dec 21;11 Suppl 2(Suppl 2):S15. doi: 10.1186/1472-6963-11-S2-S15.

Abstract

BACKGROUND

Focus groups, rapid assessment procedures, key informant interviews and institutional reviews of local health services provide valuable insights on health service resources and performance. A long-standing challenge of health planning is to combine this sort of qualitative evidence in a unified analysis with quantitative evidence from household surveys. A particular challenge in this regard is to take account of the neighbourhood or clustering effects, recognising that these can be informative or incidental.

METHODS

An example of food aid and food sufficiency from the Bosnian emergency (1995-96) illustrates two Lamothe cluster-adjustments of the Mantel Haenszel (MH) procedure, one assuming a fixed odds ratio and the other allowing for informative clustering by not assuming a fixed odds ratio. We compared these with conventional generalised estimating equations and a generalised linear mixed (GLMM) model, using a Laplace adjustment.

RESULTS

The MH adjustment assuming incidental clustering generated a final model very similar to GEE. The adjustment that does not assume a fixed odds ratio produced a final multivariate model and effect sizes very similar to GLMM.

DISCUSSION

In medium or large data sets with stratified last stage random sampling, the cluster adjusted MH is substantially more conservative than the naïve MH computation. In the example of food aid in the Bosnian crisis, the cluster adjusted MH that does not assume a fixed odds ratio produced similar results to the GLMM, which identified informative clustering.

摘要

背景

焦点小组、快速评估程序、关键知情人访谈和对当地卫生服务机构的审查为卫生服务资源和绩效提供了有价值的见解。卫生规划的一个长期挑战是将这种定性证据与来自家庭调查的定量证据结合起来进行统一分析。在这方面的一个特殊挑战是要考虑到邻里或聚类效应,认识到这些效应可能是有信息的或偶然的。

方法

以波斯尼亚紧急情况(1995-1996 年)中的粮食援助和粮食充足为例,说明了两种拉莫特聚类调整曼特尔-海恩茨(MH)程序,一种假设固定优势比,另一种通过不假设固定优势比来允许信息聚类。我们使用拉普拉斯调整,将这些方法与传统的广义估计方程和广义线性混合(GLMM)模型进行了比较。

结果

假设偶然聚类的 MH 调整产生的最终模型与 GEE 非常相似。不假设固定优势比的调整产生了最终的多变量模型和效果大小,与 GLMM 非常相似。

讨论

在具有分层最后阶段随机抽样的中等或大型数据集,聚类调整的 MH 比幼稚的 MH 计算要保守得多。在波斯尼亚危机中的粮食援助示例中,不假设固定优势比的聚类调整 MH 产生了与 GLMM 相似的结果,GLMM 确定了信息聚类。

相似文献

8
Interval estimation of the common odds ratio from k(2 x 2) tables under cluster sampling.整群抽样下来自k个(2×2)表的共同优势比的区间估计。
Stat Med. 1999 May 15;18(9):1087-100. doi: 10.1002/(sici)1097-0258(19990515)18:9<1087::aid-sim101>3.0.co;2-c.
9
Assessing infections at multiple levels of aggregation.在多个汇总层面评估感染情况。
Prev Vet Med. 1997 Jan;29(3):161-77. doi: 10.1016/s0167-5877(96)01084-7.

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验