Carr G J, Portier C J
Procter & Gamble Company, Biometrics and Statistical Sciences Department, Cincinnati, Ohio 45241.
Biometrics. 1993 Sep;49(3):779-91.
The analysis of quantal-response developmental toxicology data by dose-response modeling is discussed, with emphasis on methods that avoid exact distributional assumptions. These methods (quasi-likelihood, bootstrapping, and jackknifing) are contrasted with analyses based on the beta-binomial distribution. For the resampling procedures, dose-response models are fit under a binomial likelihood. A justification for this choice of estimator in resampling plans is given, based on an extension of the standard results for asymptotic normality and consistency of maximum likelihood estimators. This justification depends only on the true distribution of the data having the usual binomial expectation. A quasi-likelihood approach is also considered, in which simple assumptions about the intralitter correlation structure are made. Quasi-likelihood methods are in theory asymptotically robust to misspecification of the intralitter correlation structure. The practical implications of these asymptotic results are evaluated in a simulation study.
本文讨论了通过剂量反应模型对定量反应发育毒理学数据进行分析,重点介绍了避免精确分布假设的方法。这些方法(拟似然法、自抽样法和交叉验证法)与基于贝塔二项分布的分析方法形成对比。对于重抽样程序,剂量反应模型是在二项似然下拟合的。基于最大似然估计量渐近正态性和一致性的标准结果的扩展,给出了在重抽样计划中选择这种估计量的理由。这种理由仅取决于具有通常二项期望的数据的真实分布。还考虑了一种拟似然方法,其中对窝内相关性结构做了简单假设。拟似然方法在理论上对窝内相关性结构的错误设定具有渐近稳健性。在一项模拟研究中评估了这些渐近结果的实际意义。