Korol A B, Ronin Y I, Kirzhner V M
Institute of Evolution, University of Haifa, Israel.
Genetics. 1995 Jul;140(3):1137-47. doi: 10.1093/genetics/140.3.1137.
An approach to increase the resolution power of interval mapping of quantitative trait (QT) loci is proposed, based on analysis of correlated trait complexes. For a given set of QTs, the broad sense heritability attributed to a QT locus (QTL) (say, A/a) is an increasing function of the number of traits. Thus, for some traits x and y, H(xy)2(A/a) > or = H(x)2(A/a). The last inequality holds even if y does not depend on A/a at all, but x and y are correlated within the groups AA, Aa and aa due to nongenetic factors and segregation of genes from other chromosomes. A simple relationship connects H2 (both in single trait and two-trait analysis) with the expected LOD value, ELOD = -1/2N log(1-H2). Thus, situations could exist that from the inequality H(xy)2(A/a) > or = H(x)2(A/a) a higher resolution is provided by the two-trait analysis as compared to the single-trait analysis, in spite of the increased number of parameters. Employing LOD-score procedure to simulated backcross data, we showed that the resolution power of the QTL mapping model can be elevated if correlation between QTs is taken into account. The method allows us to test numerous biologically important hypotheses concerning manifold effects of genomic segments on the defined trait complex (means, variances and correlations).
基于对相关性状复合体的分析,提出了一种提高数量性状(QT)基因座区间定位分辨率的方法。对于给定的一组QT,归因于一个QT基因座(QTL)(如A/a)的广义遗传力是性状数量的递增函数。因此,对于某些性状x和y,H(xy)2(A/a)≥H(x)2(A/a)。即使y根本不依赖于A/a,但由于非遗传因素以及来自其他染色体的基因分离,x和y在AA、Aa和aa组内是相关的,最后一个不等式仍然成立。一个简单的关系将单性状和双性状分析中的H2与预期的LOD值联系起来,即ELOD = -1/2N log(1 - H2)。因此,尽管参数数量增加,但可能存在这样的情况:根据不等式H(xy)2(A/a)≥H(x)2(A/a),与单性状分析相比,双性状分析能提供更高的分辨率。通过对模拟回交数据应用LOD评分程序,我们表明,如果考虑QT之间的相关性,QTL定位模型的分辨率可以提高。该方法使我们能够检验许多关于基因组片段对定义的性状复合体的多种效应(均值、方差和相关性)的生物学重要假设。