Strother S C, Anderson J R, Schaper K A, Sidtis J J, Liow J S, Woods R P, Rottenberg D A
PET Imaging and Neurology Services, VA Medical Center, Minneapolis, MN 55417, USA.
J Cereb Blood Flow Metab. 1995 Sep;15(5):738-53. doi: 10.1038/jcbfm.1995.94.
Using [15O]water PET and a previously well studied motor activation task, repetitive finger-to-thumb opposition, we compared the spatial activation patterns produced by (1) global normalization and intersubject averaging of paired-image subtractions, (2) the mean differences of ANCOVA-adjusted voxels in Statistical Parametric Mapping, (3) ANCOVA-adjusted voxels followed by principal component analysis (PCA), (4) ANCOVA-adjustment of mean image volumes (mean over subjects at each time point) followed by F-masking and PCA, and (5) PCA with Scaled Subprofile Model pre- and postprocessing. All data analysis techniques identified large positive focal activations in the contralateral sensorimotor cortex and ipsilateral cerebellar cortex, with varying levels of activation in other parts of the motor system, e.g., supplementary motor area, thalamus, putamen; techniques 1-4 also produced extensive negative areas. The activation signal of interest constitutes a very small fraction of the total nonrandom signal in the original dataset, and the exact choice of data preprocessing steps together with a particular analysis procedure have a significant impact on the identification and relative levels of activated regions. The challenge for the future is to identify those preprocessing algorithms and data analysis models that reproducibly optimize the identification and quantification of higher-order sensorimotor and cognitive responses.
利用[15O]水正电子发射断层扫描(PET)以及之前充分研究过的运动激活任务——重复性的手指对拇指对掌动作,我们比较了以下几种方法所产生的空间激活模式:(1)对配对图像减法进行全局归一化和受试者间平均;(2)在统计参数映射中对协方差分析(ANCOVA)调整后的体素进行平均差异分析;(3)对ANCOVA调整后的体素进行主成分分析(PCA);(4)对平均图像体积(每个时间点上受试者的平均值)进行ANCOVA调整,随后进行F掩码和PCA;(5)采用缩放子轮廓模型进行预处理和后处理的PCA。所有数据分析技术均在对侧感觉运动皮层和同侧小脑皮层中识别出较大的正向局灶性激活,运动系统的其他部分(如辅助运动区、丘脑、壳核)的激活水平各不相同;技术1 - 4还产生了广泛的负性区域。感兴趣的激活信号在原始数据集中的总非随机信号中只占很小一部分,数据预处理步骤的具体选择以及特定的分析程序对激活区域的识别和相对水平有重大影响。未来的挑战是确定那些能够可重复地优化高阶感觉运动和认知反应识别与量化的预处理算法和数据分析模型。