Sotiras Aristeidis, Resnick Susan M, Davatzikos Christos
Section for Biomedical Image Analysis, Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA 19104, USA.
Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD 21224, USA.
Neuroimage. 2015 Mar;108:1-16. doi: 10.1016/j.neuroimage.2014.11.045. Epub 2014 Dec 12.
In this paper, we investigate the use of Non-Negative Matrix Factorization (NNMF) for the analysis of structural neuroimaging data. The goal is to identify the brain regions that co-vary across individuals in a consistent way, hence potentially being part of underlying brain networks or otherwise influenced by underlying common mechanisms such as genetics and pathologies. NNMF offers a directly data-driven way of extracting relatively localized co-varying structural regions, thereby transcending limitations of Principal Component Analysis (PCA), Independent Component Analysis (ICA) and other related methods that tend to produce dispersed components of positive and negative loadings. In particular, leveraging upon the well known ability of NNMF to produce parts-based representations of image data, we derive decompositions that partition the brain into regions that vary in consistent ways across individuals. Importantly, these decompositions achieve dimensionality reduction via highly interpretable ways and generalize well to new data as shown via split-sample experiments. We empirically validate NNMF in two data sets: i) a Diffusion Tensor (DT) mouse brain development study, and ii) a structural Magnetic Resonance (sMR) study of human brain aging. We demonstrate the ability of NNMF to produce sparse parts-based representations of the data at various resolutions. These representations seem to follow what we know about the underlying functional organization of the brain and also capture some pathological processes. Moreover, we show that these low dimensional representations favorably compare to descriptions obtained with more commonly used matrix factorization methods like PCA and ICA.
在本文中,我们研究了使用非负矩阵分解(NNMF)来分析结构性神经影像数据。目标是识别出在个体间以一致方式共同变化的脑区,因此这些脑区可能是潜在脑网络的一部分,或者受到诸如遗传学和病理学等潜在共同机制的影响。NNMF提供了一种直接的数据驱动方式来提取相对局部的共同变化的结构区域,从而超越了主成分分析(PCA)、独立成分分析(ICA)以及其他倾向于产生正负负荷分散成分的相关方法的局限性。特别是,利用NNMF生成基于部分的图像数据表示的众所周知的能力,我们得出了将大脑划分为在个体间以一致方式变化的区域的分解方法。重要的是,这些分解通过高度可解释的方式实现了降维,并且如通过拆分样本实验所示,能很好地推广到新数据。我们在两个数据集上对NNMF进行了实证验证:i)一项扩散张量(DT)小鼠脑发育研究,以及ii)一项人类脑老化的结构性磁共振(sMR)研究。我们展示了NNMF在各种分辨率下生成基于部分的稀疏数据表示的能力。这些表示似乎符合我们对大脑潜在功能组织的了解,并且还捕捉到了一些病理过程。此外,我们表明这些低维表示与通过更常用的矩阵分解方法(如PCA和ICA)获得的描述相比具有优势。