Suppr超能文献

Commentary and opinion: I. Principal component analysis, variance partitioning, and "functional connectivity".

作者信息

Strother S C, Kanno I, Rottenberg D A

机构信息

PET Imaging Service, VA Medical Center, Minneapolis, Minnesota 55417, USA.

出版信息

J Cereb Blood Flow Metab. 1995 May;15(3):353-60. doi: 10.1038/jcbfm.1995.44.

Abstract

We briefly review the need for careful study of "variance partitioning" and "optimal model selection" in functional positron emission tomography (PET) data analysis, emphasizing the use of principal component analysis (PCA) and the importance of data analytic techniques that allow for heterogeneous spatial covariance structures. Using an [15O]water dataset, we demonstrate that--even after data processing--the intrasubject signal component of primary interest in baseline activation studies constitutes a very small fraction of the intersubject variance. This small intrasubject variance component is subtly but significantly changed by using analysis of covariance instead of scaled subprofile model processing before applying PCA. Finally, we argue that the concept of "functional connectivity" should be interpreted very generally until the relative roles of inter- and intrasubject variability in both disease and normal PET datasets are better understood.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验