Calabrese R L, Nadim F, Olsen O H
Department of Biology, Emory University, Atlanta, Georgia 30322, USA.
J Neurobiol. 1995 Jul;27(3):390-402. doi: 10.1002/neu.480270311.
We have analyzed in detail the neuronal network that generates heartbeat in the leech. Reciprocally inhibitory pairs of heart interneurons form oscillators that pace the heartbeat rhythm. Other heart interneurons coordinate these oscillators. These coordinating interneurons, along with the oscillators interneurons, form an eight-cell timing oscillator network for heartbeat. Still other interneurons, along with the oscillator interneurons, inhibit heart motor neurons, sculpting their activity into rhythmic bursts. Critical switch interneurons interface between the oscillator interneurons and the other premotor interneurons to produce two alternating coordination states of the motor neurons. The periods of the oscillator interneurons are modulated by endogenous RFamide neuropeptides. We have explored the ionic currents and graded and spike-mediated synaptic transmission that promote oscillation in the oscillator interneurons and have incorporated these data into a conductance-based computer model. This model has been of considerable predictive value and has led to new insights into how reciprocally inhibitory neurons produce oscillation. We are now in a strong position to expand this model upward, to encompass the entire heartbeat network, horizontally, to elucidate the mechanisms of FMRFamide modulation, and downward, to incorporate cellular morphology. By studying the mechanisms of motor pattern formation in the leech, using modeling studies in conjunction with parallel physiological experiments, we can contribute to a deeper understanding of how rhythmic motor acts are generated, coordinated, modulated, and reconfigured at the level of networks, cells, ionic currents, and synapses.
我们详细分析了水蛭中产生心跳的神经网络。心脏中间神经元的相互抑制对形成了调节心跳节律的振荡器。其他心脏中间神经元协调这些振荡器。这些协调中间神经元与振荡器中间神经元一起,形成了一个用于心跳的八细胞定时振荡器网络。还有其他中间神经元与振荡器中间神经元一起抑制心脏运动神经元,将它们的活动塑造为有节奏的爆发。关键的转换中间神经元在振荡器中间神经元和其他运动前中间神经元之间起接口作用,以产生运动神经元的两种交替协调状态。振荡器中间神经元的周期受内源性RFamide神经肽的调节。我们研究了促进振荡器中间神经元振荡的离子电流、分级和峰电位介导的突触传递,并将这些数据纳入了基于电导的计算机模型。该模型具有相当大的预测价值,并为相互抑制的神经元如何产生振荡带来了新的见解。我们现在处于有利地位,可以向上扩展这个模型,以涵盖整个心跳网络,横向扩展以阐明FMRFamide调节的机制,向下扩展以纳入细胞形态。通过研究水蛭中运动模式形成的机制,结合建模研究与并行的生理实验,我们可以更深入地理解有节奏的运动行为是如何在网络、细胞、离子电流和突触水平上产生、协调、调节和重新配置的。