Schimmel P, Giegé R, Moras D, Yokoyama S
Department of Biology, Massachusetts Institute of Technology, Cambridge 02139.
Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):8763-8. doi: 10.1073/pnas.90.19.8763.
RNA helical oligonucleotides that recapitulate the acceptor stems of transfer RNAs, and that are devoid of the anticodon trinucleotides of the genetic code, are aminoacylated by aminoacyl tRNA synthetases. The specificity of aminoacylation is sequence dependent, and both specificity and efficiency are generally determined by only a few nucleotides proximal to the amino acid attachment site. This sequence/structure-dependent aminoacylation of RNA oligonucleotides constitutes an operational RNA code for amino acids. To a rough approximation, members of the two different classes of tRNA synthetases are, like tRNAs, organized into two major domains. The class-defining conserved domain containing the active site incorporates determinants for recognition of RNA mini-helix substrates. This domain may reflect the primordial synthetase, which was needed for expression of the operational RNA code. The second synthetase domain, which generally is less or not conserved, provides for interactions with the second domain of tRNA, which incorporates the anticodon. The emergence of the genetic from the operational RNA code could occur when the second domain of synthetases was added with the anticodon-containing domain of tRNAs.
能够重现转运RNA(tRNA)受体茎结构且不含遗传密码反密码子三核苷酸的RNA螺旋寡核苷酸,可被氨酰tRNA合成酶进行氨酰化。氨酰化的特异性取决于序列,其特异性和效率通常仅由氨基酸连接位点附近的少数核苷酸决定。RNA寡核苷酸的这种序列/结构依赖性氨酰化构成了氨基酸的一种功能性RNA编码。大致而言,两类不同的tRNA合成酶成员,与tRNA一样,被组织成两个主要结构域。包含活性位点的类别定义保守结构域包含识别RNA小螺旋底物的决定因素。该结构域可能反映了原始合成酶,它是表达功能性RNA编码所必需的。第二个合成酶结构域通常保守性较低或不保守,它负责与tRNA的第二个结构域相互作用,该结构域包含反密码子。当合成酶的第二个结构域与含反密码子的tRNA结构域结合时,遗传密码可能从功能性RNA编码中产生。