Allen R C
Research and Development Division, ExOxEmis, Inc., Little Rock, Arkansas.
Environ Health Perspect. 1994 Dec;102 Suppl 10(Suppl 10):201-8. doi: 10.1289/ehp.94102s10201.
Immune information in the form of inflammatory mediators directs phagocyte locomotion and increases expression of opsonin receptors such that contact with an opsonized microbe results in receptor ligation and activation of microbicidal metabolism. Carbohydrate dehydrogenation and O2 consumption feed reactions that effectively lower the spin quantum number (S) of O2 from 1 to 1/2 and finally to 0. Oxidase-catalyzed univalent reduction of O2 (S = 1; triplet multiplicity) yields hydrodioxylic acid (HO2) and its conjugate base superoxide, O2- (S = 1/2; doublet multiplicity). Acid or enzymatic disproportionation of superoxide yields H2O2 (S = 0; singlet multiplicity). Haloperoxidase catalyzes H2O2-dependent oxidation of Cl- yielding HOCl (S = 0), and reaction of HOCl with H2O2 yields singlet molecular oxygen, 1O2 (S = 0; singlet multiplicity). The Wigner spin conservation rule restricts direct reaction of S = 1 O2 with S = 0 organic molecules. Lowering the S of O2 overcomes this spin restriction and allows microbicidal combustion. High exergonicity dioxygenation reactions yield electronically excited carbonyl products that relax by photon emission, i.e., phagocyte luminescence. Addition of high quantum yield substrates susceptible to spin allowed dioxygenation, i.e., chemiluminigenic substrates, greatly increases detection sensitivity and defines the nature of the oxygenating agent. Measurement of luminescence allows high sensitivity, real-time, and substrate-specific differential analysis of phagocyte dioxygenating activities. Under assay conditions where immune mediator and opsonin exposure are controlled, luminescence analysis of the initial phase of opsonin-stimulated oxygenation activity allows functional assessment of the opsonin receptor expression per circulating phagocyte and can be used to gauge the in vivo state of immune activation.
炎症介质形式的免疫信息指导吞噬细胞运动,并增加调理素受体的表达,使得与被调理的微生物接触会导致受体连接和杀菌代谢的激活。碳水化合物脱氢和氧气消耗为有效降低氧气自旋量子数(S)从1降至1/2并最终降至0的反应提供能量。氧化酶催化的氧气单价还原反应(S = 1;三重态多重性)产生氢过氧酸(HO2)及其共轭碱超氧化物O2-(S = 1/2;二重态多重性)。超氧化物的酸催化或酶催化歧化反应产生H2O2(S = 0;单重态多重性)。卤过氧化物酶催化H2O2依赖的Cl-氧化反应生成HOCl(S = 0),HOCl与H2O2反应生成单重态分子氧1O2(S = 0;单重态多重性)。维格纳自旋守恒规则限制了S = 1的O2与S = 0的有机分子直接反应。降低O2的S值可克服这种自旋限制并实现杀菌燃烧。高放能双加氧反应产生通过光子发射弛豫的电子激发羰基产物,即吞噬细胞发光。添加易受自旋允许的双加氧反应影响的高量子产率底物,即化学发光底物,可大大提高检测灵敏度并确定氧化剂的性质。发光测量允许对吞噬细胞双加氧活性进行高灵敏度、实时和底物特异性差异分析。在免疫介质和调理素暴露得到控制的检测条件下,对调理素刺激的氧化活性初始阶段的发光分析允许对每个循环吞噬细胞的调理素受体表达进行功能评估,并可用于评估体内免疫激活状态。