Suppr超能文献

[超声与骨骼:一段复杂的关系]

[Ultrasound and the bone: a difficult relationship].

作者信息

Cittadini G, Martinoli C

机构信息

Istituto di Radiologia, Università degli Studi di Genova.

出版信息

Radiol Med. 1995 Jan-Feb;89(1-2):12-7.

PMID:7716291
Abstract

The principles of US physics and technology hampering both the production of US images of the bone and the assessment of the soft tissue structures underlying it are discussed. In theory, two US parameters play a role in this field: the different transmission velocity of the US beam through soft tissues and bone, and the marked attenuation of the US beam when crossing the bone. The former parameter, due to higher density and lower compressibility of the bone with respect to soft tissues, causes both intense reflection (and thus beam weakening) and refraction (and thus lateral resolution and US image distortions) at the soft tissue/bone interfaces. Moreover, US transmission velocity in the bone differs significantly from the reference velocity of the US scanners on the market based on that of soft tissues. As a consequence, during the reconstruction of a bone US image, artifacts resulting in the axial compression of bone structures should, at least in theory, occur. The latter parameter, due to both conversion into heat (absorption) and local dispersion (scattering), is likely to be main factor causing the loss of US energy when the US beam passes through the bone. Although the amount of matter (bone mass or density) undoubtedly accounts for some attenuation, local bone architecture (bulk and shear moduli of bone and marrow, bone and marrow density, marrow viscosity and porosity, permeability and tortuosity of cancellous bone structure) seems nevertheless also responsible for some attenuation through both absorption and scattering. Other consequences of attenuation reflecting on US imaging of the bone are: marked lowering of central transducer frequency and US beam widening preventing the correct identification of the interfaces originating echoes by relating them to the structures on the transducer axis. In conclusion, based on the above parameters, echoencephalography and transcranial Doppler US can be expected to improve, in the near future, their bone-crossing capabilities, even though no true gray-scale bone sonogram will ever be feasible.

摘要

讨论了妨碍美国获取骨骼超声图像以及对其下方软组织结构进行评估的超声物理和技术原理。理论上,有两个超声参数在该领域发挥作用:超声束穿过软组织和骨骼时的不同传播速度,以及超声束穿过骨骼时的显著衰减。前一个参数,由于骨骼相对于软组织具有更高的密度和更低的可压缩性,会在软组织/骨骼界面处引起强烈反射(从而导致波束减弱)和折射(从而导致横向分辨率和超声图像失真)。此外,骨骼中的超声传播速度与市场上基于软组织速度的超声扫描仪的参考速度有显著差异。因此,至少在理论上,在重建骨骼超声图像时,会出现导致骨骼结构轴向压缩的伪像。后一个参数,由于转化为热量(吸收)和局部散射,可能是超声束穿过骨骼时导致超声能量损失的主要因素。尽管物质的量(骨质量或密度)无疑会导致一些衰减,但局部骨结构(骨和骨髓的体积模量和剪切模量、骨和骨髓密度、骨髓粘度和孔隙率、松质骨结构的渗透率和曲折度)似乎也通过吸收和散射导致一些衰减。衰减对骨骼超声成像的其他影响包括:中央换能器频率显著降低以及超声束变宽,这使得通过将回波与换能器轴上的结构相关联来正确识别产生回波的界面变得困难。总之,基于上述参数,尽管真正的灰度骨骼超声图永远不可行,但在不久的将来,脑回波描记术和经颅多普勒超声有望提高其穿透骨骼的能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验