Suppr超能文献

酵母乙醇脱氢酶反应中的同位素效应与结构-反应性关联。芳香醇酶催化氧化的研究。

Isotope effects and structure-reactivity correlations in the yeast alcohol dehydrogenase reaction. A study of the enzyme-catalyzed oxidation of aromatic alcohols.

作者信息

Klinman J P

出版信息

Biochemistry. 1976 May 4;15(9):2018-26. doi: 10.1021/bi00654a032.

Abstract

Steady-state kinetic parameters for the yeast alcohol dehydrogenase catalyzed oxidation of a series of parasubstituted benzyl alcohols-1, 1-h2 and -1, 1-d2 by NAD+ are reported. Catalytic constants have been found to be characterized by large deuterium isotope effects: kH/kD=4.8, p-Br; 4.2, p-Cl; 3, 4, p-H; 4, 2, p-CH3; 3, 2, p-CH3O. The observed isotope effects on k(cat)/K(A), K(A), and K(B), where K(A) and K(B) are Michaelis constants for NAD+ and alcohol, indicate a borderline rapid equilibrium-steady-state kinetic mechanism involving the random addition of substrate and coenzyme to enzyme. With the exception of p-CH3 and possible p-CH3O substituted benzyl alcohol, k(cat) is concluded to represent a single, rate-limiting hydrogen transfer step. A multiple linear regression analysis of the combined data for benzaldehyde reduction (Klinman, J.P. (1972), J. Biol. Chem. 247, 7977-7987, expanded to include p-CH(CH3) 2-substituted benzaldehyde) and benzyl alcohol oxidation has been carried out to determine the contribution of electronic, hydrophobic, and steric effects to k(cat) and substrate binding. Benzaldehyde binding is concluded to depend on electronic substituent effects as previously reported [log 1/K(ald)=(-0.92 +/- 0.18)sigma+-(0.80 +/- 0.067)], whereas benzyl alcohol binding correlates with substrate hydrophobicity [(log 1/K(alc)=(0.60 +/- 0.14) log P -(1.2 +/- 0.12)]. In the case of benzyl alcohol oxidation, k(cat) is independent of electronic and steric effects; the best of seven equations indicates a small negative dependence of k(cat) on hydrophobicity, which is within experimental error or zero [log k(o)=(-0.075 +/- 0.25) log P -(0.65 +/- 0.19)]. Data for benzaldehyde reduction are correlated at the 99% significance level by a single variable equation [(log k(R)=(2.1 +/- 0.37) sigma+-(0.093 +/- 0.14)] and a two variable equation [(log k(R)=(1.9 +/- 0.33) sigma+ + (0.46 +/- 0.20) log P-(0.46 +/- 0.20)]; these equations indicate (a) a large dependence on electronic substituent as reported previously and (b) a possible role for hydrophobic factors in facilitating catalysis. As the result of the observed hydrophobic substituent effects, different ground-state interactions are suggested for the binding of benzaldehydes and benzyl alcohols. Electronic substituent effects lead to the conclusion that there is little or no change in charge at C-1 of substrate at the transition state, relative to alcohol in the ground state. The significance of these effects to the detailed properties of the hydrogen transfer step is discussed.

摘要

报道了酵母乙醇脱氢酶催化一系列对取代苄醇(1,1 - H₂和1,1 - D₂)被NAD⁺氧化的稳态动力学参数。已发现催化常数具有较大的氘同位素效应:对溴代苄醇kH/kD = 4.8;对氯代苄醇kH/kD = 4.2;对氢苄醇kH/kD = 3.4;对甲基苄醇kH/kD = 4.2;对甲氧基苄醇kH/kD = 3.2。观察到的对k(cat)/K(A)、K(A)和K(B)的同位素效应,其中K(A)和K(B)分别是NAD⁺和醇的米氏常数,表明这是一种介于快速平衡 - 稳态动力学机制之间的情况,涉及底物和辅酶随机添加到酶上。除了对甲基苄醇和可能的对甲氧基取代苄醇外,k(cat)被认为代表一个单一的、限速的氢转移步骤。对苯甲醛还原(克林曼,J.P.(1972年),《生物化学杂志》247卷,7977 - 7987页,扩展到包括对异丙基取代苯甲醛)和苄醇氧化的综合数据进行了多元线性回归分析,以确定电子、疏水和空间效应对k(cat)和底物结合的贡献。得出结论,苯甲醛结合取决于电子取代基效应,如先前报道[log 1/K(ald)=(-0.92 ± 0.18)σ + (0.80 ± 0.067)],而苄醇结合与底物疏水性相关[(log 1/K(alc)=(0.60 ± 0.14) log P - (1.2 ± 0.12)]。在苄醇氧化的情况下,k(cat)与电子和空间效应无关;七个方程中最好的一个表明k(cat)对疏水性有小的负依赖性,这在实验误差范围内或为零[log k(o)=(-0.075 ± 0.25) log P - (0.65 ± 0.19)]。苯甲醛还原数据通过单变量方程[(log k(R)=(2.1 ± 0.37)σ + (0.093 ± 0.14)]和双变量方程[(log k(R)=(1.9 ± 0.33)σ + + (0.46 ± 0.20) log P - (0.46 ± 0.20)]在99%的显著水平上相关;这些方程表明(a)如先前报道的那样对电子取代基有很大依赖性,以及(b)疏水因素在促进催化中可能起的作用。由于观察到的疏水取代基效应,表明苯甲醛和苄醇的结合存在不同的基态相互作用。电子取代基效应得出结论,相对于基态的醇,在过渡态底物的C - 1处电荷几乎没有变化。讨论了这些效应对于氢转移步骤详细性质的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验