Suppr超能文献

酶催化氢化物转移速率加速起源的重新评估。

A reevaluation of the origin of the rate acceleration for enzyme-catalyzed hydride transfer.

作者信息

Reyes Archie C, Amyes Tina L, Richard John P

机构信息

Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, USA.

出版信息

Org Biomol Chem. 2017 Oct 31;15(42):8856-8866. doi: 10.1039/c7ob01652b.

Abstract

There is no consensus of opinion on the origin of the large rate accelerations observed for enzyme-catalyzed hydride transfer. The interpretation of recent results from studies on hydride transfer reactions catalyzed by alcohol dehydrogenase (ADH) focus on the proposal that the effective barrier height is reduced by quantum-mechanical tunneling through the energy barrier. This interpretation contrasts sharply with the notion that enzymatic rate accelerations are obtained through direct stabilization of the transition state for the nonenzymatic reaction in water. The binding energy of the dianion of substrate DHAP provides 11 kcal mol stabilization of the transition state for the hydride transfer reaction catalyzed by glycerol-3-phosphate dehydrogenase (GPDH). We summarize evidence that the binding interactions between (GPDH) and dianion activators are utilized directly for stabilization of the transition state for enzyme-catalyzed hydride transfer. The possibility is considered, and then discounted, that these dianion binding interactions are utilized for the stabilization of a tunnel ready state (TRS) that enables efficient tunneling of the transferred hydride through the energy barrier, and underneath the energy maximum for the transition state. It is noted that the evidence to support the existence of a tunnel-ready state for the hydride transfer reactions catalyzed by ADH is ambiguous. We propose that the rate acceleration for ADH is due to the utilization of the binding energy of the cofactor NAD+/NADH in the stabilization of the transition state for enzyme-catalyzed hydride transfer.

摘要

对于酶催化氢化物转移所观察到的大幅速率加速的起源,目前尚无共识。对酒精脱氢酶(ADH)催化的氢化物转移反应的最新研究结果的解释集中在这样一种观点上,即有效势垒高度通过量子力学隧穿穿过能垒而降低。这种解释与酶促速率加速是通过直接稳定水中非酶促反应的过渡态这一观点形成鲜明对比。底物磷酸二羟丙酮二价阴离子的结合能为甘油 - 3 - 磷酸脱氢酶(GPDH)催化的氢化物转移反应的过渡态提供了11千卡/摩尔的稳定性。我们总结了证据表明,(GPDH)与二价阴离子激活剂之间的结合相互作用直接用于稳定酶催化氢化物转移的过渡态。考虑了这些二价阴离子结合相互作用用于稳定隧道就绪态(TRS)的可能性,该状态能够使转移的氢化物有效地隧穿能垒,并在过渡态能量最大值之下,但随后又排除了这种可能性。需要指出的是,支持ADH催化的氢化物转移反应存在隧道就绪态的证据并不明确。我们提出,ADH的速率加速是由于利用了辅因子NAD⁺/NADH的结合能来稳定酶催化氢化物转移的过渡态。

相似文献

1
A reevaluation of the origin of the rate acceleration for enzyme-catalyzed hydride transfer.
Org Biomol Chem. 2017 Oct 31;15(42):8856-8866. doi: 10.1039/c7ob01652b.
3
A substrate in pieces: allosteric activation of glycerol 3-phosphate dehydrogenase (NAD+) by phosphite dianion.
Biochemistry. 2008 Apr 22;47(16):4575-82. doi: 10.1021/bi8001743. Epub 2008 Apr 1.
4
Enzyme Architecture: A Startling Role for Asn270 in Glycerol 3-Phosphate Dehydrogenase-Catalyzed Hydride Transfer.
Biochemistry. 2016 Mar 15;55(10):1429-32. doi: 10.1021/acs.biochem.6b00116. Epub 2016 Mar 3.
5
Specificity in transition state binding: the Pauling model revisited.
Biochemistry. 2013 Mar 26;52(12):2021-35. doi: 10.1021/bi301491r. Epub 2013 Feb 4.
7
Glycerol 3-Phosphate Dehydrogenase Catalyzed Hydride Transfer: Enzyme Activation by Cofactor Pieces.
Biochemistry. 2024 Nov 5;63(21):2878-2891. doi: 10.1021/acs.biochem.4c00324. Epub 2024 Sep 25.
8
Enzyme architecture: optimization of transition state stabilization from a cation-phosphodianion pair.
J Am Chem Soc. 2015 Apr 29;137(16):5312-5. doi: 10.1021/jacs.5b02202. Epub 2015 Apr 21.
10
Human Glycerol 3-Phosphate Dehydrogenase: X-ray Crystal Structures That Guide the Interpretation of Mutagenesis Studies.
Biochemistry. 2019 Feb 26;58(8):1061-1073. doi: 10.1021/acs.biochem.8b01103. Epub 2019 Jan 31.

引用本文的文献

1
Loss of Hyperconjugative Effects Drives Hydride Transfer during Dihydrofolate Reductase Catalysis.
ACS Catal. 2019 Nov 1;9(11):10343-10349. doi: 10.1021/acscatal.9b02839. Epub 2019 Sep 23.
2
Protein Flexibility and Stiffness Enable Efficient Enzymatic Catalysis.
J Am Chem Soc. 2019 Feb 27;141(8):3320-3331. doi: 10.1021/jacs.8b10836. Epub 2019 Feb 14.
3
Human Glycerol 3-Phosphate Dehydrogenase: X-ray Crystal Structures That Guide the Interpretation of Mutagenesis Studies.
Biochemistry. 2019 Feb 26;58(8):1061-1073. doi: 10.1021/acs.biochem.8b01103. Epub 2019 Jan 31.

本文引用的文献

1
Enzyme Architecture: Modeling the Operation of a Hydrophobic Clamp in Catalysis by Triosephosphate Isomerase.
J Am Chem Soc. 2017 Aug 2;139(30):10514-10525. doi: 10.1021/jacs.7b05576. Epub 2017 Jul 19.
2
Enzyme activation through the utilization of intrinsic dianion binding energy.
Protein Eng Des Sel. 2017 Mar 1;30(3):157-165. doi: 10.1093/protein/gzw064.
5
Structure-Function Studies of Hydrophobic Residues That Clamp a Basic Glutamate Side Chain during Catalysis by Triosephosphate Isomerase.
Biochemistry. 2016 May 31;55(21):3036-47. doi: 10.1021/acs.biochem.6b00311. Epub 2016 May 17.
6
Enzyme Architecture: A Startling Role for Asn270 in Glycerol 3-Phosphate Dehydrogenase-Catalyzed Hydride Transfer.
Biochemistry. 2016 Mar 15;55(10):1429-32. doi: 10.1021/acs.biochem.6b00116. Epub 2016 Mar 3.
7
Mechanistic implications from structures of yeast alcohol dehydrogenase complexed with coenzyme and an alcohol.
Arch Biochem Biophys. 2016 Feb 1;591:35-42. doi: 10.1016/j.abb.2015.12.009. Epub 2015 Dec 29.
8
Role of Loop-Clamping Side Chains in Catalysis by Triosephosphate Isomerase.
J Am Chem Soc. 2015 Dec 9;137(48):15185-97. doi: 10.1021/jacs.5b09328. Epub 2015 Nov 30.
9
Kinetic Detection of Orthogonal Protein and Chemical Coordinates in Enzyme Catalysis: Double Mutants of Soybean Lipoxygenase.
Biochemistry. 2015 Sep 8;54(35):5447-56. doi: 10.1021/acs.biochem.5b00374. Epub 2015 Aug 26.
10
Enzyme architecture: optimization of transition state stabilization from a cation-phosphodianion pair.
J Am Chem Soc. 2015 Apr 29;137(16):5312-5. doi: 10.1021/jacs.5b02202. Epub 2015 Apr 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验