Flanders W D, Drews C D, Kosinski A S
Division of Epidemiology, Emory University School of Public Health, Atlanta, GA 30329, USA.
Epidemiology. 1995 Mar;6(2):152-6. doi: 10.1097/00001648-199503000-00011.
Misclassification of exposure is a serious problem in epidemiology. Methods for addressing misclassification are available, but most are based on limiting assumptions such as availability of a "gold standard" measure of true exposure, or availability of two tests of exposure whose performance is nondifferential. In this paper, we discuss a method that allows the investigator to correct for differential misclassification in case-control studies. Our method only requires two potentially imperfect tests for measuring exposure. Importantly, the sensitivity and specificity of each test when applied to cases may differ from the sensitivity and specificity when applied to controls. The approach does require two subgroups of cases, such that each test's sensitivity and specificity is the same across these subgroups and requires analogous subgroups for controls. We exemplify our approach in several ways, using hypothetical data, using data from a case-control study of birth defects and service in Vietnam, and by a small Monte Carlo study. Finally, we discuss limitations of the method.
暴露的错误分类是流行病学中的一个严重问题。解决错误分类的方法是存在的,但大多数方法基于一些有限的假设,例如存在真实暴露的“金标准”测量方法,或者存在两种暴露检测方法且其性能无差异。在本文中,我们讨论一种方法,该方法允许研究者在病例对照研究中校正差异错误分类。我们的方法仅需要两种可能不完美的检测方法来测量暴露。重要的是,每种检测方法应用于病例时的敏感性和特异性可能与应用于对照时的敏感性和特异性不同。该方法确实需要病例的两个亚组,以便每种检测方法在这些亚组中的敏感性和特异性相同,并且对照也需要类似的亚组。我们通过几种方式举例说明我们的方法,使用假设数据、使用越南出生缺陷与服务的病例对照研究数据以及通过一个小型蒙特卡罗研究。最后,我们讨论该方法的局限性。