Plamondon R
Ecole Polytechnique de Montréal, Département de Génie Electrique et de Génie Informatique, Succursale Centre-Ville, Canada.
Biol Cybern. 1995;72(4):295-307. doi: 10.1007/BF00202785.
This paper proposes a kinematic theory that can be used to study and analyze rapid human movements. It describes a synergy in terms of the agonist and antagonist neuromuscular systems involved in the production of these movements. It is shown that these systems have a log-normal impulse response that results from the limiting behavior of a large number of interdependent neuromuscular networks, as predicted by the central limit theorem. The delta log-normal law that follows from this model is very general and can reproduce almost perfectly the complete velocity patterns of an end-effector. The theory accounts for the invariance and rescalability of these patterns, as well as for the various observations that have been reported concerning the change in maximum and mean velocities, time to maximum velocity, etc., under different experimental conditions. Movement time, load effects, and control strategies are discussed in a companion paper.
本文提出了一种运动学理论,可用于研究和分析人类的快速运动。它从参与这些运动产生的主动肌和拮抗肌神经肌肉系统的角度描述了一种协同作用。结果表明,这些系统具有对数正态脉冲响应,这是由大量相互依赖的神经肌肉网络的极限行为导致的,正如中心极限定理所预测的那样。由此模型得出的δ对数正态定律非常通用,几乎可以完美地重现末端执行器的完整速度模式。该理论解释了这些模式的不变性和可缩放性,以及在不同实验条件下关于最大速度和平均速度变化、达到最大速度的时间等方面所报告的各种观察结果。运动时间、负荷效应和控制策略将在一篇配套论文中进行讨论。