Percheron G, Yelnik J, François C, Fénelon G, Talbi B
Laboratoire de Neuromorphologie informationnelle et de neurologie expérimentale du mouvement, Hôpital de la Salpêtrière, Paris.
Rev Neurol (Paris). 1994 Aug-Sep;150(8-9):614-26.
This paper describes a major cerebral system whose contours are only emerging: the "basal ganglia related system". This is made up of the "system of the basal ganglia" itself plus its inputs and outputs. The system of the basal ganglia may be divided into the "basal ganglia core" comprising the striatum and its pallidal and nigral targets and the "regulators of the core". Distinguishable include regulators of the striatum (the dopaminergic pars compacta and the central complex of the thalamus or centre median-parafascicularis), regulators of the pallidonigrum (the subthalamic nucleus and the pedunculopontine complex) and internal regulators (at first the lateral nucleus of the pallidum). The main input to this system comes from the cerebral cortex. The main output is the thalamus and from it to the cortex. The whole "basal ganglia related system" may thus be seen as a cortico-cortical circuit passing through the basal ganglia. Information processing in the system is very complex. New data presented here emphasize two connections: cortico-striate and striato-pallidonigral connections. It is stressed that the first uses complex combinations of confluence or difluence on small matricial islands. This step could be a selection and reorganisation of cortical information. The second process is a strong "dynamically focused convergence" combining information from different upstream sources in order to derive an adequate informational product for the production of harmonious and adapted motricity.
“基底神经节相关系统”。它由“基底神经节系统”本身及其输入和输出组成。基底神经节系统可分为由纹状体及其苍白球和黑质靶点组成的“基底神经节核心”以及“核心调节因子”。可区分的包括纹状体调节因子(多巴胺能致密部和丘脑中央复合体或中央中核-束旁核)、苍白球黑质调节因子(丘脑底核和脚桥复合体)以及内部调节因子(最初是苍白球外侧核)。该系统的主要输入来自大脑皮层。主要输出是丘脑,再从丘脑到皮层。因此,整个“基底神经节相关系统”可被视为一个经过基底神经节的皮质-皮质回路。该系统中的信息处理非常复杂。此处呈现的新数据强调了两种连接:皮质-纹状体连接和纹状体-苍白球黑质连接。需要强调的是,第一种连接在小的矩阵岛状区域使用汇合或分流的复杂组合。这一步骤可能是对皮质信息的选择和重组。第二个过程是一种强烈的“动态聚焦汇聚”,它将来自不同上游来源的信息组合起来,以便产生一个适当的信息产物,用于产生协调和适应性的运动。