Suppr超能文献

Transcranial optical path length in infants by near-infrared phase-shift spectroscopy.

作者信息

Benaron D A, Kurth C D, Steven J M, Delivoria-Papadopoulos M, Chance B

机构信息

Department of Anesthesiology, University of Pennsylvania School of Medicine, Philadelphia, USA.

出版信息

J Clin Monit. 1995 Mar;11(2):109-17. doi: 10.1007/BF01617732.

Abstract

BACKGROUND

Near-infrared spectroscopy (NIRS) is an emerging technique for noninvasive, bedside monitoring of cerebral oxygenation and blood flow. Traditionally, it has relied on the Beer's Law relationship in which the concentration of light-absorbing oxygen-carrying pigments is proportional to their light absorbance, and inversely proportional to an optical path length (a measure of the distance traveled by photons passing through the tissue). In practice, NIRS has been based upon assumptions that mean transcranial optical path length, the average optical path length for a given patient, is constant among patients and independent of the wavelength of light used.

OBJECTIVE

The objective of our study was to measure mean optical transcranial path length in infants as a step in allowing quantitation of cerebral oxygenation.

METHODS

We measured mean transcranial optical path length in 34 infants, aged 1 day to 3 years, using amplitude-modulated phase-shift spectroscopy at 754 nm and 816 nm. Optical transcranial path lengths (mean +/- SEM) were 8.6 +/- 0.9 cm, 11.1 +/- 0.9 cm, and 11.3 +/- 0.9 cm at 754 nm, and 8.8 +/- 0.9 cm, 11.2 +/- 0.8 cm, and 11.1 +/- 0.9 cm at 816 nm, using emitter-detector separations of 1.8, 2.5, and 3.0 cm, respectively. Optical path length increased as emitter-detector separation, head circumference, or age increased. Variance in the ratio of mean optical path lengths at the two different wavelengths exceeded that accounted for by variation in repeated measures alone (p < 0.001), suggesting that optical path length is also not independent of wavelength.

CONCLUSIONS

NIRS instrument emitter-detector geometry, subject age, head size, and wavelength used each influence optical path length. Quantitative NIRS measurements in clinical use may require concurrent measurement of both absorbance and optical path length at each wavelength, or use of newer measures that are not based upon Beer's Law assumptions.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验