Suppr超能文献

简单剪切流中模型白细胞在壁面附近的运动。

Motion of model leukocytes near a wall in simple shear flow.

作者信息

Tempelman L A, Park S, Hammer D A

机构信息

School of Chemical Engineering, Cornell University, Ithaca, New York 14853.

出版信息

Biotechnol Prog. 1994 Jan-Feb;10(1):97-108. doi: 10.1021/bp00025a012.

Abstract

Receptor-mediated cell adhesion to surfaces depends on the motion of the cell prior to adhesion. We studied the hydrodynamic behavior of cells near a wall in simple shear flow using a model leukocyte system that we have also used extensively in cell-substrate adhesion studies. Specifically, we measured the velocity of rat basophilic leukemia (RBL) cells near a surface in a parallel-plate flow chamber and compared it to the motion of polystyrene beads and glutaraldehyde-fixed RBL cells. We found that RBL cells (13 microns diameter) travel 25% faster than polystyrene beads of 14.5 microns diameter for a wide range of shear rates (20-180 s-1); this suggests that RBL cells would travel 39% faster than polystyrene beads of equivalent size. Glutaraldehyde-fixed RBL cells travel at a velocity between those of live cells and 14.5-microns beads. These differences in velocities have been observed over both polyacrylamide gel and glass substrates. Application of a theory for hard sphere motion near a wall in simple shear flow at low Reynolds number [Goldman, A.J.; Cox, R.G.; Brenner, H. Chem. Eng. Sci. 1967b, 22, 653-660] to our measured cell velocities suggests that cells are separated from the wall by > or = 550 nm. Such large separation distances have also been predicted by others who have used hard sphere theory to analyze the effect of shear flow on cell motion near walls. However, the extensive receptor-mediated cell adhesion seen in these systems is inconsistent with these separation distances, which are approximately 30 times greater than the distance required for receptor-ligand contact. Instead, we propose that, because of cell deformability and cell surface roughness, cells remain within a separation distance that allows for molecular contact while they travel faster than the hard sphere theory predicts. Therefore, the theory of Goldman and co-workers, while adequate for hard sphere motion, is likely not accurate for cellular motion.

摘要

受体介导的细胞与表面的黏附取决于细胞在黏附前的运动。我们使用一种模型白细胞系统研究了简单剪切流中细胞在壁附近的流体动力学行为,该系统我们也广泛用于细胞-底物黏附研究。具体而言,我们测量了平行板流动腔中大鼠嗜碱性白血病(RBL)细胞在表面附近的速度,并将其与聚苯乙烯珠和戊二醛固定的RBL细胞的运动进行比较。我们发现,在很宽的剪切速率范围(20 - 180 s⁻¹)内,直径13微米的RBL细胞比直径14.5微米的聚苯乙烯珠快25%移动;这表明RBL细胞比同等大小的聚苯乙烯珠快39%移动。戊二醛固定的RBL细胞的移动速度介于活细胞和14.5微米珠之间。在聚丙烯酰胺凝胶和玻璃底物上都观察到了这些速度差异。将低雷诺数下简单剪切流中硬球在壁附近运动的理论[戈德曼,A.J.;考克斯,R.G.;布伦纳,H.《化学工程科学》1967年b卷,22卷,653 - 660页]应用于我们测量的细胞速度表明,细胞与壁的分离距离大于或等于550纳米。其他使用硬球理论分析剪切流对壁附近细胞运动影响的人也预测到了如此大的分离距离。然而,在这些系统中看到的广泛的受体介导的细胞黏附与这些分离距离不一致,这些分离距离大约比受体-配体接触所需距离大30倍。相反,我们提出,由于细胞的可变形性和细胞表面粗糙度,细胞在移动时保持在允许分子接触的分离距离内,同时它们的移动速度比硬球理论预测的要快。因此,戈德曼及其同事的理论虽然适用于硬球运动,但可能对细胞运动不准确。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验