Suppr超能文献

噬菌体λ的S基因表达与裂解时间

S gene expression and the timing of lysis by bacteriophage lambda.

作者信息

Chang C Y, Nam K, Young R

机构信息

Department of Biology, Texas A&M University, College Station 77843-2128, USA.

出版信息

J Bacteriol. 1995 Jun;177(11):3283-94. doi: 10.1128/jb.177.11.3283-3294.1995.

Abstract

The S gene of bacteriophage lambda encodes the holin required for release of the R endolysin at the onset of phage-induced host lysis. S is the promoter-proximal gene on the single lambda late transcript and spans 107 codons. S has a novel translational initiation region with dual start codons, resulting in the production of two protein products, S105 and S107. Although differing only by the Met-1-Lys-2... N-terminal extension present on S107, the two proteins are thought to have opposing functions, with the shorter polypeptide acting as the lysis effector and the longer one acting as an inhibitor. The expression of wild-type and mutant alleles of the holin gene has been assessed quantitatively with respect to the scheduling of lysis. S mRNA accumulates during the late gene expression period to a final level of about 170 molecules per cell and is maintained at that level for at least the last 15 min before lysis. Total S protein synthesis, partitioned at about 2:1 in favor of the S105 protein compared with the other product, S107, accumulates to a final level of approximately 4,600 molecules per cell. The kinetics of accumulation of S is consistent with a constant translational rate of less than one S protein per mRNA per minute. Mutant alleles with alterations in the translational initiation region were studied to determine how the translational initiation region of S achieves the proper partition of initiation events at the two S start codons and how the synthesis of S105 and S107 relates to lysis timing. The results are discussed in terms of a model for the pathway by which the 30S ribosome-fMet-tRNA complex binds to the translational initiation region of S. In addition, analysis of the relationship between lysis timing and the levels of the two S gene products suggests that S107 inhibits S105, the lethal lysis effector, by a stoichiometric titration.

摘要

噬菌体λ的S基因编码在噬菌体诱导宿主裂解开始时释放R内溶素所需的穿孔素。S是单个λ晚期转录本上启动子近端的基因,跨度为107个密码子。S有一个具有双重起始密码子的新型翻译起始区域,产生两种蛋白质产物,S105和S107。尽管这两种蛋白质仅在S107上存在的Met-1-Lys-2……N端延伸上有所不同,但人们认为它们具有相反的功能,较短的多肽作为裂解效应物,较长的多肽作为抑制剂。关于裂解的时间安排,已经对穿孔素基因的野生型和突变等位基因的表达进行了定量评估。S mRNA在晚期基因表达期间积累到每个细胞约170个分子的最终水平,并在裂解前至少最后15分钟保持在该水平。总的S蛋白合成中,与另一种产物S107相比,约2:1有利于S105蛋白,积累到每个细胞约4600个分子的最终水平。S的积累动力学与每个mRNA每分钟少于一个S蛋白的恒定翻译速率一致。研究了翻译起始区域发生改变的突变等位基因,以确定S的翻译起始区域如何在两个S起始密码子处实现起始事件的正确分配,以及S105和S107的合成与裂解时间的关系。根据30S核糖体-fMet-tRNA复合物与S的翻译起始区域结合的途径模型对结果进行了讨论。此外,对裂解时间与两种S基因产物水平之间关系的分析表明,S107通过化学计量滴定抑制致命的裂解效应物S105。

相似文献

1
S gene expression and the timing of lysis by bacteriophage lambda.
J Bacteriol. 1995 Jun;177(11):3283-94. doi: 10.1128/jb.177.11.3283-3294.1995.
2
Synthesis of two bacteriophage lambda S proteins in an in vivo system.
Gene. 1993 Oct 29;133(1):9-16. doi: 10.1016/0378-1119(93)90218-r.
3
The lethal lambda S gene encodes its own inhibitor.
EMBO J. 1990 Apr;9(4):981-9. doi: 10.1002/j.1460-2075.1990.tb08200.x.
4
Conservation of a dual-start motif in P22 lysis gene regulation.
J Bacteriol. 1990 Jan;172(1):204-11. doi: 10.1128/jb.172.1.204-211.1990.
6
Charged amino-terminal amino acids affect the lethal capacity of Lambda lysis proteins S107 and S105.
Mol Microbiol. 1993 May;8(3):525-33. doi: 10.1111/j.1365-2958.1993.tb01597.x.
7
Dual translational initiation sites control function of the lambda S gene.
EMBO J. 1989 Nov;8(11):3501-10. doi: 10.1002/j.1460-2075.1989.tb08515.x.
8
Functional analysis of heterologous holin proteins in a lambdaDeltaS genetic background.
FEMS Microbiol Lett. 2000 Mar 15;184(2):179-86. doi: 10.1111/j.1574-6968.2000.tb09011.x.
9
Molecular function of the dual-start motif in the lambda S holin.
Mol Microbiol. 1999 Aug;33(3):569-82. doi: 10.1046/j.1365-2958.1999.01501.x.
10
Functions involved in bacteriophage P2-induced host cell lysis and identification of a new tail gene.
J Bacteriol. 1994 Aug;176(16):4974-84. doi: 10.1128/jb.176.16.4974-4984.1994.

引用本文的文献

1
2
Identifying components of the phage LambdaSo lysis system.
J Bacteriol. 2024 Jun 20;206(6):e0002224. doi: 10.1128/jb.00022-24. Epub 2024 May 21.
4
Spatial and temporal control of lysis by the lambda holin.
mBio. 2024 Feb 14;15(2):e0129023. doi: 10.1128/mbio.01290-23. Epub 2023 Dec 21.
5
Systematic and scalable genome-wide essentiality mapping to identify nonessential genes in phages.
PLoS Biol. 2023 Dec 4;21(12):e3002416. doi: 10.1371/journal.pbio.3002416. eCollection 2023 Dec.
6
Acinetobacter Baumannii Phages: Past, Present and Future.
Viruses. 2023 Mar 3;15(3):673. doi: 10.3390/v15030673.
7
Initiation at AUGUG and GUGUG sequences can lead to translation of overlapping reading frames in E. coli.
Nucleic Acids Res. 2023 Jan 11;51(1):271-289. doi: 10.1093/nar/gkac1175.
8
Single-Cell Approach Reveals Intercellular Heterogeneity in Phage-Producing Capacities.
Microbiol Spectr. 2023 Feb 14;11(1):e0266321. doi: 10.1128/spectrum.02663-21. Epub 2022 Dec 21.
9
Topological examination of the bacteriophage lambda S holin by EPR spectroscopy.
Biochim Biophys Acta Biomembr. 2023 Feb;1865(2):184083. doi: 10.1016/j.bbamem.2022.184083. Epub 2022 Nov 9.
10
Bacteriophage-encoded lethal membrane disruptors: Advances in understanding and potential applications.
Front Microbiol. 2022 Oct 26;13:1044143. doi: 10.3389/fmicb.2022.1044143. eCollection 2022.

本文引用的文献

1
RNA and protein elements of E. coli and lambda transcription antitermination complexes.
Cell. 1993 Mar 12;72(5):653-5. doi: 10.1016/0092-8674(93)90394-6.
3
Charged amino-terminal amino acids affect the lethal capacity of Lambda lysis proteins S107 and S105.
Mol Microbiol. 1993 May;8(3):525-33. doi: 10.1111/j.1365-2958.1993.tb01597.x.
4
Synthesis of two bacteriophage lambda S proteins in an in vivo system.
Gene. 1993 Oct 29;133(1):9-16. doi: 10.1016/0378-1119(93)90218-r.
6
Chemical assays for proteins.
Methods Mol Biol. 1993;19:197-202. doi: 10.1385/0-89603-236-1:197.
7
Ribosome initiation complex formation with the pseudoknotted alpha operon messenger RNA.
J Mol Biol. 1993 Feb 5;229(3):609-22. doi: 10.1006/jmbi.1993.1067.
8
Nucleotide sequence of the Q gene and the Q to S intergenic region of bacteriophage lambda.
Virology. 1982 Feb;117(1):81-92. doi: 10.1016/0042-6822(82)90509-8.
9
The R gene product of bacteriophage lambda is the murein transglycosylase.
Mol Gen Genet. 1981;184(1):111-4. doi: 10.1007/BF00271205.
10
Cell lysis by induction of cloned lambda lysis genes.
Mol Gen Genet. 1981;182(2):326-31. doi: 10.1007/BF00269678.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验