Kholodenko B N, Sauro H M, Westerhoff H V, Cascante M
A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Russia.
Biochem Mol Biol Int. 1995 Mar;35(3):615-25.
Metabolic control analysis allows one to express the elasticity coefficients (which describe the "local" kinetic features of enzymes) in terms of the control coefficients (quantitative indicators of the "global" control properties). However, when coenzymes (or metabolites linked by conservation constraints) are present in the pathway this procedure yields the "apparent" values of elasticity coefficients that correspond to the kinetic responses of the enzymes to such a simultaneous change of the coenzyme forms which leaves the total concentration of these forms unchanged (e.g., NAD+ + NADH in the glycolysis). We show that a generalised connectivity theorem (Kholodenko et al, Eur. J. Biochem. (1994) 225, 179-186) makes it possible to express the elasticity coefficients with respect to every coenzyme form separately. Such expressions include (i) the control coefficients and (ii) the responses to changes in the total concentrations of the coenzymes.
代谢控制分析使人们能够根据控制系数(“全局”控制特性的定量指标)来表示弹性系数(描述酶的“局部”动力学特征)。然而,当途径中存在辅酶(或由守恒约束联系的代谢物)时,此过程会产生弹性系数的“表观”值,这些值对应于酶对辅酶形式的这种同时变化的动力学响应,而这种变化使这些形式的总浓度保持不变(例如,糖酵解中的NAD⁺ + NADH)。我们表明,一个广义的连通性定理(霍尔登科等人,《欧洲生物化学杂志》(1994年)225卷,第179 - 186页)使得分别针对每种辅酶形式来表示弹性系数成为可能。这些表达式包括(i)控制系数和(ii)对辅酶总浓度变化的响应。