Suppr超能文献

Artificial transmembrane segments. Requirements for stop transfer and polypeptide orientation.

作者信息

Chen H, Kendall D A

机构信息

Department of Molecular and Cell Biology, University of Connecticut, Storrs 06269, USA.

出版信息

J Biol Chem. 1995 Jun 9;270(23):14115-22. doi: 10.1074/jbc.270.23.14115.

Abstract

Transmembrane segments of proteins generally consist of a long stretch of hydrophobic amino acids, which can function to initiate membrane insertion (start-stop sequences), initiate translocation (signal-anchor sequences), or stop further translocation of the following polypeptide chain (stop-transfer sequences). In this study, we have taken Escherichia coli alkaline phosphatase, a transported and water-soluble protein, and examined the requirements for converting it into a transmembrane protein with particular orientation. Since the wild type enzyme is transported, there is no predisposition against membrane translocation, yet it is not a membrane protein, so it does not possess any intrinsic membrane topogenic preferences. A series of potential transmembrane segments was introduced into an internal position of the enzyme to test the ability of each to initiate translocation, stop translocation, and adopt a particular orientation. For this purpose, cassette mutagenesis was used to incorporate new structural segments composed of polymers of alanines and leucines. The threshold value of hydrophobicity required to function as a stop-transfer sequence was determined. For a transmembrane segment of typical length (21 residues), this value is equivalent to the hydrophobicity of 16 alanines and 5 leucines. Interestingly, much shorter segments will also suffice to stop translocation, but these must be composed of more highly hydrophobic residues (e.g. 11 leucines). When the wild type amino-terminal signal peptide is deleted or made dysfunctional, sufficiently hydrophobic internal segments can initiate translocation of the following polypeptide and function as a signal anchor. Furthermore, in so doing, the orientation of the protein is changed from N(out)-C(in) to N(in)-C(out).

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验