Suppr超能文献

细菌苯丙氨酸羟化酶催化循环中高自旋 Fe(IV)物种的证据。

Evidence for a high-spin Fe(IV) species in the catalytic cycle of a bacterial phenylalanine hydroxylase.

机构信息

Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States.

出版信息

Biochemistry. 2011 Mar 22;50(11):1928-33. doi: 10.1021/bi1019868. Epub 2011 Feb 16.

Abstract

Phenylalanine hydroxylase is a mononuclear non-heme iron protein that uses tetrahydropterin as the source of the two electrons needed to activate dioxygen for the hydroxylation of phenylalanine to tyrosine. Rapid-quench methods have been used to analyze the mechanism of a bacterial phenylalanine hydroxylase from Chromobacterium violaceum. Mössbauer spectra of samples prepared by freeze-quenching the reaction of the enzyme-(57)Fe(II)-phenylalanine-6-methyltetrahydropterin complex with O(2) reveal the accumulation of an intermediate at short reaction times (20-100 ms). The Mössbauer parameters of the intermediate (δ = 0.28 mm/s, and |ΔE(Q)| = 1.26 mm/s) suggest that it is a high-spin Fe(IV) complex similar to those that have previously been detected in the reactions of other mononuclear Fe(II) hydroxylases, including a tetrahydropterin-dependent tyrosine hydroxylase. Analysis of the tyrosine content of acid-quenched samples from similar reactions establishes that the Fe(IV) intermediate is kinetically competent to be the hydroxylating intermediate. Similar chemical-quench analysis of a reaction allowed to proceed for several turnovers shows a burst of tyrosine formation, consistent with rate-limiting product release. All three data sets can be modeled with a mechanism in which the enzyme-substrate complex reacts with oxygen to form an Fe(IV)═O intermediate with a rate constant of 19 mM(-1) s(-1), the Fe(IV)═O intermediate hydroxylates phenylalanine with a rate constant of 42 s(-1), and rate-limiting product release occurs with a rate constant of 6 s(-1) at 5 °C.

摘要

苯丙氨酸羟化酶是一种单核非血红素铁蛋白,它使用四氢喋呤作为两个电子的来源,这些电子用于激活氧,从而使苯丙氨酸羟化为酪氨酸。已经使用快速淬火方法来分析来自紫色色杆菌的细菌苯丙氨酸羟化酶的机制。通过将酶-(57)Fe(II)-苯丙氨酸-6-甲基四氢喋呤复合物与 O(2)反应的快速冷冻淬灭样品的 Mössbauer 光谱揭示了在短反应时间(20-100 毫秒)下积累了中间产物。中间产物的 Mössbauer 参数(δ = 0.28 mm/s,和 |ΔE(Q)| = 1.26 mm/s)表明它是类似于先前在其他单核 Fe(II)羟化酶的反应中检测到的高自旋 Fe(IV)配合物,包括四氢喋呤依赖性酪氨酸羟化酶。类似反应的酸淬灭样品中天冬氨酸含量的分析确定了 Fe(IV)中间产物在动力学上是羟基化中间产物。对进行了几个周转的类似反应的化学淬火分析显示出酪氨酸形成的爆发,这与限速产物释放一致。所有三个数据集都可以用一个机制进行建模,其中酶-底物复合物与氧气反应形成具有 19 mM(-1) s(-1)的速率常数的 Fe(IV)═O 中间产物,Fe(IV)═O 中间产物以 42 s(-1)的速率常数羟基化苯丙氨酸,并且在 5 °C 下限速产物释放的速率常数为 6 s(-1)。

相似文献

1
Evidence for a high-spin Fe(IV) species in the catalytic cycle of a bacterial phenylalanine hydroxylase.
Biochemistry. 2011 Mar 22;50(11):1928-33. doi: 10.1021/bi1019868. Epub 2011 Feb 16.
2
Order of substrate binding in bacterial phenylalanine hydroxylase and its mechanistic implication for pterin-dependent oxygenases.
J Biol Inorg Chem. 2003 Jan;8(1-2):121-8. doi: 10.1007/s00775-002-0395-6. Epub 2002 Sep 5.
3
Kinetic Mechanism and Intrinsic Rate Constants for the Reaction of a Bacterial Phenylalanine Hydroxylase.
Biochemistry. 2016 Dec 13;55(49):6848-6857. doi: 10.1021/acs.biochem.6b01012. Epub 2016 Nov 30.
6
Kinetic mechanism of phenylalanine hydroxylase: intrinsic binding and rate constants from single-turnover experiments.
Biochemistry. 2013 Feb 12;52(6):1062-73. doi: 10.1021/bi301675e. Epub 2013 Jan 29.
10

引用本文的文献

1
Nonheme Fe═O Complexes Supported by Four Pentadentate Ligands: Reactivity toward H- and O- Atom Transfer Processes.
Inorg Chem. 2023 Nov 13;62(45):18338-18356. doi: 10.1021/acs.inorgchem.3c02526. Epub 2023 Nov 1.
2
Thermodynamics of iron, tetrahydrobiopterin, and phenylalanine binding to phenylalanine hydroxylase from Chromobacterium violaceum.
Arch Biochem Biophys. 2022 Oct 30;729:109378. doi: 10.1016/j.abb.2022.109378. Epub 2022 Aug 20.
3
Mechanism of Methyldehydrofosmidomycin Maturation: Use Olefination to Enable Chain Elongation.
J Am Chem Soc. 2022 May 11;144(18):8257-8266. doi: 10.1021/jacs.2c01924. Epub 2022 Apr 28.
5
Unmasking Steps in Intramolecular Aromatic Hydroxylation by a Synthetic Nonheme Oxoiron(IV) Complex.
Angew Chem Int Ed Engl. 2021 Sep 13;60(38):20991-20998. doi: 10.1002/anie.202108309. Epub 2021 Aug 11.
6
Mechanisms of O Activation by Mononuclear Non-Heme Iron Enzymes.
Biochemistry. 2021 Nov 23;60(46):3497-3506. doi: 10.1021/acs.biochem.1c00370. Epub 2021 Jul 15.
8
Carbon-fluorine bond cleavage mediated by metalloenzymes.
Chem Soc Rev. 2020 Jul 21;49(14):4906-4925. doi: 10.1039/c9cs00740g. Epub 2020 Jun 8.
9
The oxidation of cyclo-olefin by the S = 2 ground-state complex [Fe(O)(TQA)(NCMe)].
J Biol Inorg Chem. 2020 May;25(3):371-382. doi: 10.1007/s00775-020-01768-1. Epub 2020 Mar 4.
10
Structure of full-length human phenylalanine hydroxylase in complex with tetrahydrobiopterin.
Proc Natl Acad Sci U S A. 2019 Jun 4;116(23):11229-11234. doi: 10.1073/pnas.1902639116. Epub 2019 May 22.

本文引用的文献

3
Measurement of intrinsic rate constants in the tyrosine hydroxylase reaction.
Biochemistry. 2010 Jan 26;49(3):645-52. doi: 10.1021/bi901874e.
7
Global kinetic explorer: a new computer program for dynamic simulation and fitting of kinetic data.
Anal Biochem. 2009 Apr 1;387(1):20-9. doi: 10.1016/j.ab.2008.12.024. Epub 2008 Dec 25.
10
Direct spectroscopic evidence for a high-spin Fe(IV) intermediate in tyrosine hydroxylase.
J Am Chem Soc. 2007 Sep 19;129(37):11334-5. doi: 10.1021/ja074446s. Epub 2007 Aug 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验