Suppr超能文献

Insulin resistance vs. hyperinsulinemia in hypertension: insulin regulation of Ca2+ transport and Ca(2+)-regulation of insulin sensitivity.

作者信息

Zemel M B

机构信息

Department of Nutrition, University of Tennessee, Knoxville 37996-1900, USA.

出版信息

J Nutr. 1995 Jun;125(6 Suppl):1738S-1743S. doi: 10.1093/jn/125.suppl_6.1738S.

Abstract

Hypertension in obesity and insulin resistance has been attributed to insulin stimulation of sympathetic neural output and renal sodium retention. However, recent data demonstrates a significant vasodilatory effect of insulin and suggests that vascular smooth muscle resistance to this action may instead be the cause of hypertension in insulin resistance. This concept is supported by the observation that pharmacological amplification of peripheral insulin sensitivity results in reduced arterial pressure. Insulin attenuates vasoconstrictor responses to pressor agonists and accelerates vascular smooth muscle relaxation, while these effects are blunted in obesity and insulin resistance. Insulin regulation of vasoconstriction and vascular relaxation appears to be secondary to regulation of intracellular Ca2+ ([Ca2+]i), as insulin attenuates both voltage- and receptor-mediated Ca2+ influx and stimulates both the transcription and activity of Ca(2+)-ATPase in vascular smooth muscle cells. Further, these effects are also blunted in insulin resistance. Although [Ca2+]i plays a poorly understood role in insulin signalling, increases beyond an optimal range results in impaired insulin sensitivity, possibly by Ca(2+)-inhibition of insulin-induced dephosphorylation of insulin-sensitive substrates. Consistent with this concept, ectopic overexpression of the agouti gene in the viable yellow (Avy) mouse results in increased skeletal myocyte [Ca2+]i. Accordingly, increased [Ca2+]i in primary insulin target tissues appears to result in peripheral insulin resistance which then results in aberrant regulation of vascular smooth muscle [Ca2+]i and increases in arterial pressure.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验