Conaway M R
Department of Community and Family Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA.
Biometrics. 1994 Dec;50(4):1102-16.
This paper uses causal models for nonresponse (Fay, 1986, Journal of the American Statistical Association 81, 354-365) to extend the conditional likelihood procedure for repeated categorical outcome variables to allow for nonrandomly missing data. The extension based on causal models is similar to the log-linear approach presented by Conaway (1992, Journal of the American Statistical Association, 87, 817-824), but has the advantage that the parameters are directly interpretable in terms of the distribution of the outcome variables. As with log-linear model approach, all of the computations can be done with standard statistical software. The methods are first described in terms of a simple example with three binary responses with no covariates and then are applied to a more complicated example. A simulation study evaluates the properties of the estimates based on the proposed method.
本文使用针对无应答的因果模型(Fay,1986年,《美国统计协会杂志》81卷,354 - 365页),将针对重复分类结果变量的条件似然程序进行扩展,以处理非随机缺失数据。基于因果模型的扩展类似于Conaway(1992年,《美国统计协会杂志》,87卷,817 - 824页)提出的对数线性方法,但具有参数可根据结果变量的分布直接解释的优点。与对数线性模型方法一样,所有计算都可以使用标准统计软件完成。这些方法首先通过一个具有三个无协变量的二元响应的简单示例进行描述,然后应用于一个更复杂的示例。一项模拟研究评估了基于所提出方法的估计量的性质。