Suppr超能文献

二元交叉数据的边际建模

Marginal modeling of binary cross-over data.

作者信息

Becker M P, Balagtas C C

机构信息

Department of Biostatistics, University of Michigan, Ann Arbor 48109-2029.

出版信息

Biometrics. 1993 Dec;49(4):997-1009.

PMID:8117910
Abstract

A model specified in terms of linear models for marginal logits and linear models for log-odds ratios is proposed for the analysis of two-period binary cross-over experiments. Hypothesis testing and parameter estimation are facilitated by standard likelihood methodology. Two examples are used to illustrate how the model can be used to analyze two-period binary cross-over experiments. Results from a simulation study demonstrate that this approach to the analysis of binary cross-over data compares favorably with standard procedures, such as the Mainland-Gart test for a treatment difference, Prescott's test for a treatment difference, and the Hills-Armitage test for treatment-by-period interaction.

摘要

本文提出了一种用于两期二元交叉试验分析的模型,该模型基于边际对数几率的线性模型和对数优势比的线性模型。标准似然方法有助于进行假设检验和参数估计。通过两个例子来说明如何使用该模型分析两期二元交叉试验。模拟研究结果表明,这种二元交叉数据的分析方法与标准程序相比具有优势,如用于治疗差异的内地-加特检验、普雷斯科特检验以及用于治疗-时期交互作用的希尔斯-阿米蒂奇检验。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验