Paik M C, Tsai W Y, Ottman R
Division of Biostatistics, School of Public Health, Columbia University, New York, New York 10032.
Biometrics. 1994 Dec;50(4):975-88.
In this note we propose a frailty model called piecewise gamma frailty for correlated survival data with random effects having a nested structure. In frailty models, a dependence function defined as a hazard ratio of one member given the failure time of another member in a unit is determined by the distributional assumptions on frailty. In the piecewise gamma frailty model, the nested structure of random effects or frailty allows the dependence function to vary over the time periods. This model includes existing models such as the piecewise exponential model (Breslow, 1974, Biometrics 30, 89-100) and the gamma frailty model (Clayton, 1978, Biometrika 65, 141-151; Oakes, 1982, Journal of the Royal Statistical Society, Series B 44, 414-428) as special cases. A study of familial aggregation of epilepsy is used to illustrate the proposed method.
在本笔记中,我们针对具有嵌套结构随机效应的相关生存数据,提出了一种称为分段伽马脆弱性模型的脆弱性模型。在脆弱性模型中,依赖函数被定义为在一个单位中,给定另一个成员的失效时间时,一个成员的风险比,它由关于脆弱性的分布假设决定。在分段伽马脆弱性模型中,随机效应或脆弱性的嵌套结构使得依赖函数在不同时间段内有所变化。该模型包括一些现有模型,如分段指数模型(Breslow,1974,《生物统计学》30,89 - 100)和伽马脆弱性模型(Clayton,1978,《生物计量学杂志》65,141 - 151;Oakes,1982,《皇家统计学会会刊》,B辑44,414 - 428)作为特殊情况。一项关于癫痫家族聚集性的研究被用于阐述所提出的方法。