Zhou Ruiwen, Miller J Philip, Gordon Mae, Kass Michael, Lin Mingquan, Peng Yifan, Li Fuhai, Feng Jiarui, Liu Lei
Division of Biostatistics, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA.
Department of Ophthalmology and Visual Sciences, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA.
Stat (Int Stat Inst). 2024;13(1). doi: 10.1002/sta4.649. Epub 2024 Feb 7.
Glaucoma is a major cause of blindness and vision impairment worldwide, and visual field (VF) tests are essential for monitoring the conversion of glaucoma. While previous studies have primarily focused on using VF data at a single time point for glaucoma prediction, there has been limited exploration of longitudinal trajectories. Additionally, many deep learning techniques treat the time-to-glaucoma prediction as a binary classification problem (glaucoma Yes/No), resulting in the misclassification of some censored subjects into the nonglaucoma category and decreased power. To tackle these challenges, we propose and implement several deep-learning approaches that naturally incorporate temporal and spatial information from longitudinal VF data to predict time-to-glaucoma. When evaluated on the Ocular Hypertension Treatment Study (OHTS) dataset, our proposed convolutional neural network (CNN)-long short-term memory (LSTM) emerged as the top-performing model among all those examined. The implementation code can be found online (https://github.com/rivenzhou/VF_prediction).
青光眼是全球失明和视力损害的主要原因,视野(VF)测试对于监测青光眼的病情转变至关重要。虽然先前的研究主要集中在使用单个时间点的VF数据进行青光眼预测,但对纵向轨迹的探索有限。此外,许多深度学习技术将青光眼预测时间视为二元分类问题(青光眼是/否),导致一些被审查的受试者被错误分类为非青光眼类别,并且预测能力下降。为了应对这些挑战,我们提出并实施了几种深度学习方法,这些方法自然地融合了纵向VF数据中的时间和空间信息,以预测青光眼发病时间。在眼高压治疗研究(OHTS)数据集上进行评估时,我们提出的卷积神经网络(CNN)-长短期记忆(LSTM)模型在所有检查的模型中表现最佳。实现代码可在网上找到(https://github.com/rivenzhou/VF_prediction)。