Goldstein B, Dembo M
Theoretical Division, Los Alamos National Laboratory, New Mexico 87545, USA.
Biophys J. 1995 Apr;68(4):1222-30. doi: 10.1016/S0006-3495(95)80298-5.
We consider the problem of determining the time dependence of the bound ligand concentration for the reversible binding of a diffusing monovalent ligand to receptors uniformly distributed over the surface of a spherical cell. We start by formulating a boundary value problem that captures the essential physics of this situation. We then introduce a systematic approximation scheme based on the method of weighted residuals. By this means we convert the initial boundary value problem into a simpler problem that requires solving only a small number of ordinary differential equations. We show how, at the lowest order of approximation, the method can be used to obtain modified chemical rate equations where, in place of fundamental rate constants, effective rate coefficients appear. These rate coefficients are functions of the ligand diffusion coefficient, the cell radius, the receptor density and other variables. We compare exact and approximate solutions and discuss under what conditions the approximate equations can be used. We also apply the method of weighted residuals to obtain approximate descriptions of the binding kinetics when (1) there are two different cell surface receptor populations that bind the ligand and (2) the cell secretes a ligand that can bind back to receptors on the cell (autocrine binding).
我们考虑确定扩散的单价配体与均匀分布在球形细胞表面的受体可逆结合时,结合配体浓度的时间依赖性问题。我们首先制定一个边界值问题,该问题抓住了这种情况的基本物理原理。然后,我们基于加权残差法引入一种系统的近似方案。通过这种方式,我们将初始边界值问题转化为一个更简单的问题,该问题只需要求解少量常微分方程。我们展示了在最低近似阶次下,该方法如何用于获得修正的化学速率方程,其中有效速率系数取代基本速率常数出现。这些速率系数是配体扩散系数、细胞半径、受体密度和其他变量的函数。我们比较了精确解和近似解,并讨论了在什么条件下可以使用近似方程。我们还应用加权残差法,以获得当(1)存在两种不同的结合配体的细胞表面受体群体,以及(2)细胞分泌一种可与细胞上受体结合回的配体(自分泌结合)时,结合动力学的近似描述。