Suppr超能文献

配体扩散对细胞表面受体占据波动的影响。

Effect of ligand diffusion on occupancy fluctuations of cell-surface receptors.

机构信息

Mathematical and Statistical Computing Laboratory, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, Maryland 20892, USA.

出版信息

J Chem Phys. 2013 Sep 28;139(12):121910. doi: 10.1063/1.4816105.

Abstract

The role of diffusion in the kinetics of reversible ligand binding to receptors on a cell surface or to a macromolecule with multiple binding sites is considered. A formalism is developed that is based on a Markovian master equation for the distribution function of the number of occupied receptors containing rate constants that depend on the ligand diffusivity. The formalism is used to derive (1) a nonlinear rate equation for the mean number of occupied receptors and (2) an analytical expression for the relaxation time that characterizes the decay of equilibrium fluctuations of the occupancy of the receptors. The relaxation time is shown to depend on the ligand diffusivity and concentration, the number of receptors, the cell radius, and intrinsic association/dissociation rate constants. This result is then used to estimate the accuracy of the ligand concentration measurements by the cell, which, according to the Berg-Purcell model, is related to fluctuations in the receptor occupancy, averaged over a finite interval of time. Specifically, a simple expression (which is exact in the framework of our formalism) is derived for the variance in the measured ligand concentration in the limit of long averaging times.

摘要

本文考虑了扩散在配体与细胞表面受体或具有多个结合位点的大分子之间可逆结合的动力学中的作用。建立了一种基于马氏主方程的形式体系,用于描述受体占据数的分布函数,其中包含依赖于配体扩散系数的速率常数。该形式体系用于推导出(1)占据受体的平均数量的非线性速率方程,以及(2)用于描述受体占据平衡波动衰减的弛豫时间的解析表达式。结果表明,弛豫时间取决于配体扩散系数和浓度、受体数量、细胞半径以及内在的结合/解离速率常数。然后,根据 Berg-Purcell 模型,利用该结果来估计细胞对配体浓度测量的准确性,该模型与受体占据的波动有关,这些波动是在有限的时间间隔内平均得到的。具体而言,针对长时间平均的极限情况,推导出了用于测量的配体浓度方差的简单表达式(在我们的形式体系中是精确的)。

相似文献

2
The Berg-Purcell limit revisited.伯格-珀塞尔极限再探。
Biophys J. 2014 Feb 18;106(4):976-85. doi: 10.1016/j.bpj.2013.12.030.
4
Revising Berg-Purcell for finite receptor kinetics.针对有限受体动力学修正伯格 - 珀塞尔模型。
Biophys J. 2021 Jun 1;120(11):2237-2248. doi: 10.1016/j.bpj.2021.03.021. Epub 2021 Mar 29.

引用本文的文献

1
Trade-offs in concentration sensing in dynamic environments.动态环境中浓度传感的权衡。
Biophys J. 2024 May 21;123(10):1184-1194. doi: 10.1016/j.bpj.2024.03.025. Epub 2024 Mar 25.
3
Revising Berg-Purcell for finite receptor kinetics.针对有限受体动力学修正伯格 - 珀塞尔模型。
Biophys J. 2021 Jun 1;120(11):2237-2248. doi: 10.1016/j.bpj.2021.03.021. Epub 2021 Mar 29.
5
Diffusion-induced competitive two-site binding.扩散诱导的竞争性双位点结合。
J Chem Phys. 2019 Mar 7;150(9):094104. doi: 10.1063/1.5079748.
9
Control of neurite growth and guidance by an inhibitory cell-body signal.通过抑制性胞体信号控制神经突生长和导向。
PLoS Comput Biol. 2018 Jun 21;14(6):e1006218. doi: 10.1371/journal.pcbi.1006218. eCollection 2018 Jun.

本文引用的文献

1
Quantifying noise levels of intercellular signals.量化细胞间信号的噪声水平。
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Jun;75(6 Pt 1):061905. doi: 10.1103/PhysRevE.75.061905. Epub 2007 Jun 5.
4
Physical limits to biochemical signaling.生化信号传导的物理限制。
Proc Natl Acad Sci U S A. 2005 Jul 19;102(29):10040-5. doi: 10.1073/pnas.0504321102. Epub 2005 Jul 8.
6
Long-time tails in the kinetics of reversible bimolecular reactions.
Phys Rev Lett. 2001 Jan 29;86(5):922-5. doi: 10.1103/PhysRevLett.86.922.
10
Physics of chemoreception.化学感受的物理学
Biophys J. 1977 Nov;20(2):193-219. doi: 10.1016/S0006-3495(77)85544-6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验