Suppr超能文献

Calcium, calmodulin and cell cycle progression.

作者信息

Takuwa N, Zhou W, Takuwa Y

机构信息

Department of Physiology, Faculty of Medicine, University of Tokyo, Japan.

出版信息

Cell Signal. 1995 Feb;7(2):93-104. doi: 10.1016/0898-6568(94)00074-l.

Abstract

Proliferation of mammalian cells both in vivo and in vitro is dependent upon physiological concentrations of extracellular Ca2+. Growth factor stimulation of quiescent cells at the G0/G1 border usually results in a rapid mobilization of Ca2+ from both intra- and extracellular pools. However, Ca2+ influx is also required for later phases of cell cycle transition, especially in the late G1 phase for initiation of DNA synthesis. Available evidence indicates that calmodulin plays the major and essential roles in the Ca(2+)-dependent regulation of cell proliferation. Ca2+ and calmodulin act at multiple points in the cell cycle, including the initiation of the S phase and both initiation and completion of the M phase. Ca2+ and calmodulin stimulate the expression of genes involved in the cell cycle progression, leading to activation of cyclin-dependent kinases p33cdk2 and p34cdc2. Ca2+ and calmodulin are also involved in activation of enzymes participating in nucleotide metabolism and DNA replication, as well as nuclear envelope breakdown and cytokinesis. Ca2+/calmodulin-dependent protein kinase II and protein phosphatase calcineurin are both involved in the Ca2+ and calmodulin-mediated signalling of growth regulation. As compared to normal cells, growth of transformed cells is independent of extracellular Ca2+ and much less sensitive to calmodulin antagonists, suggesting the existence of derangements in the Ca2+ and calmodulin-mediated growth regulation mechanisms.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验