Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States.
J Am Chem Soc. 2020 Dec 16;142(50):21220-21232. doi: 10.1021/jacs.0c11156. Epub 2020 Dec 7.
Calmodulin (CaM) mediates a wide range of biological responses to changes in intracellular Ca concentrations through its calcium-dependent binding affinities to numerous target proteins. Binding of two Ca ions to each of the two four-helix-bundle domains of CaM results in major conformational changes that create a potential binding site for the CaM binding domain of a target protein, which also undergoes major conformational changes to form the complex with CaM. Details of the molecular mechanism of complex formation are not well established, despite numerous structural, spectroscopic, thermodynamic, and kinetic studies. Here, we report a study of the process by which the 26-residue peptide M13, which represents the CaM binding domain of skeletal muscle myosin light chain kinase, forms a complex with CaM in the presence of excess Ca on the millisecond time scale. Our experiments use a combination of selective C labeling of CaM and M13, rapid mixing of CaM solutions with M13/Ca solutions, rapid freeze-quenching of the mixed solutions, and low-temperature solid state nuclear magnetic resonance (ssNMR) enhanced by dynamic nuclear polarization. From measurements of the dependence of 2D C-C ssNMR spectra on the time between mixing and freezing, we find that the N-terminal portion of M13 converts from a conformationally disordered state to an α-helix and develops contacts with the C-terminal domain of CaM in about 2 ms. The C-terminal portion of M13 becomes α-helical and develops contacts with the N-terminal domain of CaM more slowly, in about 8 ms. The level of structural order in the CaM/M13/Ca complexes, indicated by C ssNMR line widths, continues to increase beyond 27 ms.
钙调蛋白(CaM)通过其与众多靶蛋白的钙离子依赖性结合亲和力,介导细胞内钙离子浓度变化引起的广泛的生物反应。两个钙离子分别与 CaM 的两个四螺旋束结构域结合,导致主要构象变化,为靶蛋白的 CaM 结合域创建一个潜在的结合位点,该结合域也发生主要构象变化,与 CaM 形成复合物。尽管进行了大量的结构、光谱、热力学和动力学研究,但复合物形成的分子机制细节仍未得到很好的确立。在这里,我们报告了一项研究,即在毫秒时间尺度上,在过量钙离子存在的情况下,代表骨骼肌肌球蛋白轻链激酶的 CaM 结合域的 26 个残基肽 M13 与 CaM 形成复合物的过程。我们的实验使用了 CaM 和 M13 的选择性 C 标记的组合,CaM 溶液与 M13/Ca 溶液的快速混合,混合溶液的快速冷冻淬火,以及低温固态核磁共振(ssNMR)增强的动态核极化。通过测量 2D C-C ssNMR 谱与混合和冷冻之间的时间依赖性,我们发现 M13 的 N 端部分从构象无序状态转变为α-螺旋,并在大约 2ms 内与 CaM 的 C 端结构域形成接触。M13 的 C 端部分较慢地成为α-螺旋并与 CaM 的 N 端结构域形成接触,大约需要 8ms。CaM/M13/Ca 复合物的结构有序度,用 C ssNMR 线宽表示,在 27ms 后继续增加。