Lalush D S, Tsui B M
Department of Biomedical Engineering, University of North Carolina at Chapel Hill 27599-7575.
Med Phys. 1994 Aug;21(8):1283-6. doi: 10.1118/1.597210.
Several authors have proposed variations of the iterative filtered backprojection (IFBP) reconstruction algorithms claiming fast initial convergence rates. We have found that these algorithms are trying to minimize an unusual squared-error criterion in a suboptimal way. As a result, existing IFBP algorithms are inefficient in the minimization of the criterion, and may become unstable at higher iteration numbers. We show that existing IFBP algorithms can be modified to use the steepest descent technique by simply optimizing the step size at each iteration. Further gains in convergence rates can be achieved with conjugate gradient IFBP algorithms derived from the same criterion. The steepest descent and conjugate gradient IFBP algorithms are guaranteed to converge, unlike some IFBP algorithms, and will do so in fewer iterations than existing IFBP algorithms.
几位作者提出了迭代滤波反投影(IFBP)重建算法的变体,声称其具有快速的初始收敛速度。我们发现这些算法试图以次优的方式最小化一个不寻常的平方误差准则。因此,现有的IFBP算法在准则最小化方面效率低下,并且在较高的迭代次数时可能变得不稳定。我们表明,通过简单地在每次迭代时优化步长,现有的IFBP算法可以被修改为使用最速下降技术。从相同准则导出的共轭梯度IFBP算法可以进一步提高收敛速度。与一些IFBP算法不同,最速下降和共轭梯度IFBP算法保证收敛,并且将比现有的IFBP算法在更少的迭代次数内收敛。