Suppr超能文献

提高迭代滤波反投影算法的收敛性。

Improving the convergence of iterative filtered backprojection algorithms.

作者信息

Lalush D S, Tsui B M

机构信息

Department of Biomedical Engineering, University of North Carolina at Chapel Hill 27599-7575.

出版信息

Med Phys. 1994 Aug;21(8):1283-6. doi: 10.1118/1.597210.

Abstract

Several authors have proposed variations of the iterative filtered backprojection (IFBP) reconstruction algorithms claiming fast initial convergence rates. We have found that these algorithms are trying to minimize an unusual squared-error criterion in a suboptimal way. As a result, existing IFBP algorithms are inefficient in the minimization of the criterion, and may become unstable at higher iteration numbers. We show that existing IFBP algorithms can be modified to use the steepest descent technique by simply optimizing the step size at each iteration. Further gains in convergence rates can be achieved with conjugate gradient IFBP algorithms derived from the same criterion. The steepest descent and conjugate gradient IFBP algorithms are guaranteed to converge, unlike some IFBP algorithms, and will do so in fewer iterations than existing IFBP algorithms.

摘要

几位作者提出了迭代滤波反投影(IFBP)重建算法的变体,声称其具有快速的初始收敛速度。我们发现这些算法试图以次优的方式最小化一个不寻常的平方误差准则。因此,现有的IFBP算法在准则最小化方面效率低下,并且在较高的迭代次数时可能变得不稳定。我们表明,通过简单地在每次迭代时优化步长,现有的IFBP算法可以被修改为使用最速下降技术。从相同准则导出的共轭梯度IFBP算法可以进一步提高收敛速度。与一些IFBP算法不同,最速下降和共轭梯度IFBP算法保证收敛,并且将比现有的IFBP算法在更少的迭代次数内收敛。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验