Xu X L, Liow J S, Strother S C
Department of Radiology, University of Minnesota, Minneapolis 55417.
Med Phys. 1993 Nov-Dec;20(6):1675-84. doi: 10.1118/1.596954.
In this paper, a unified framework of iterative algebraic reconstruction for emission computed tomography (ECT) and its application to positron emission tomography (PET) is presented. The unified framework is based on an algebraic image restoration model and contains conventional iterative algebraic reconstruction algorithms: ART, SIRT, Landweber iteration (LWB), the generalized Landweber iteration (GLWB), the steepest descent method (STP), as well as iterative filtered backprojection (IFBP) reconstruction algorithms: Chang's method, Walters' method, and a modified iterative MAP. The framework provides an effective tool to systematically study conventional iterative algebraic algorithms and IFBP algorithms. Based on this framework, conventional iterative algebraic algorithms and IFBP algorithms are generalized. It is shown from the algebraic point of view that IFBP algorithms are not only excellent methods for correction of attenuation (either uniform or nonuniform) but are also good general iterative reconstruction algorithms (they can be applied to either attenuated or attenuation-free projections and converge very fast). The convergence behavior of iterative algebraic algorithms is discussed and insight is drawn into the fast convergence property of IFBP algorithms. A simulated PET system is used to evaluate IFBP algorithms and LWB in comparison with the maximum likelihood estimation via expectation maximization algorithm (MLE-EM) and the filtered backprojection (FBP) algorithm. The simulation results indicate that for both attenuation-free projection and attenuated projection cases IFBP algorithms have a significant computational advantage over LWB and MLE-EM, and have performance advantages over FBP in terms of contrast recovery and/or noise-to-signal ratios (NSRs) in regions of interest.
本文提出了一种用于发射型计算机断层扫描(ECT)的迭代代数重建统一框架及其在正电子发射断层扫描(PET)中的应用。该统一框架基于代数图像恢复模型,包含传统的迭代代数重建算法:代数重建技术(ART)、同时迭代重建技术(SIRT)、兰德韦伯迭代(LWB)、广义兰德韦伯迭代(GLWB)、最速下降法(STP),以及迭代滤波反投影(IFBP)重建算法:张的方法、沃尔特斯的方法和一种改进的迭代最大后验概率(MAP)算法。该框架为系统研究传统迭代代数算法和IFBP算法提供了一个有效的工具。基于此框架,对传统迭代代数算法和IFBP算法进行了推广。从代数角度表明,IFBP算法不仅是校正衰减(均匀或非均匀)的优秀方法,而且也是很好的通用迭代重建算法(它们可应用于衰减或无衰减投影,并且收敛非常快)。讨论了迭代代数算法的收敛行为,并深入了解了IFBP算法的快速收敛特性。使用模拟PET系统来评估IFBP算法和LWB,并与通过期望最大化算法的最大似然估计(MLE-EM)和滤波反投影(FBP)算法进行比较。模拟结果表明,对于无衰减投影和衰减投影情况,IFBP算法在计算上比LWB和MLE-EM具有显著优势,并且在感兴趣区域的对比度恢复和/或信噪比(NSR)方面比FBP具有性能优势。