Suppr超能文献

Interaction of Pseudomonas aeruginosa with human respiratory mucosa in vitro.

作者信息

Tsang K W, Rutman A, Tanaka E, Lund V, Dewar A, Cole P J, Wilson R

机构信息

Host Defence Unit, Royal Brompton National Heart & Lung Institute, London, UK.

出版信息

Eur Respir J. 1994 Oct;7(10):1746-53. doi: 10.1183/09031936.94.07101746.

Abstract

Pseudomonas aeruginosa commonly infects the airways of patients with cystic fibrosis and bronchiectasis. It produces several toxins that slow ciliary beat, stimulate mucus production and damage epithelium. It adheres to epithelial cells, damaged mucosa (in animal models), and mucus. However, little is known of the interaction of P. aeruginosa with intact human respiratory mucosa. We have studied the interactions of a nonmucoid clinical isolate of P. aeruginosa with adenoid tissue in a novel organ culture model with an air-mucosal interphase P. aeruginosa (5.9 +/- 0.9 x 10(6) colony-forming units (cfu)) was pipetted onto the organ culture surface, and incubated for 15 min, 1, 2, 4, 8, 12, 16, and 24 h, at 37 degrees C in 5% CO2 in a humidified atmosphere. Assessment has been made by transmission and scanning electron microscopy. Transmission electron microscopy (TEM) showed that uninfected organ cultures had normal ultrastructure. TEM of infected organ cultures at 8 h showed significant epithelial damage: 43.9 +/- 10% of cells extruding from the epithelial surface, 17.7 +/- 3% of cells with loss of cilia, 32.9 +/- 10.2% of cells with mitochondrial damage, and 11.6 +/- 3% of cells with cytoplasmic blebbing. P. aeruginosa only infrequently adhered to normal epithelium, but adhered to areas of epithelial damage and to basement membrane. Scanning electron microscopy (SEM) of organ cultures up to 2 h found P. aeruginosa only infrequently associated with mucus. SEM at 4 h revealed P. aeruginosa predominantly associated with mucus and extruded damaged epithelial cells, but also occasionally associated with cilia, and very occasionally with unciliated cells.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验