Joseph L, Gyorkos T W, Coupal L
Department of Epidemiology and Biostatistics, McGill University, Montreal, Canada.
Am J Epidemiol. 1995 Feb 1;141(3):263-72. doi: 10.1093/oxfordjournals.aje.a117428.
It is common in population screening surveys or in the investigation of new diagnostic tests to have results from one or more tests investigating the same condition or disease, none of which can be considered a gold standard. For example, two methods often used in population-based surveys for estimating the prevalence of a parasitic or other infection are stool examinations and serologic testing. However, it is known that results from stool examinations generally underestimate the prevalence, while serology generally results in overestimation. Using a Bayesian approach, simultaneous inferences about the population prevalence and the sensitivity, specificity, and positive and negative predictive values of each diagnostic test are possible. The methods presented here can be applied to each test separately or to two or more tests combined. Marginal posterior densities of all parameters are estimated using the Gibbs sampler. The techniques are applied to the estimation of the prevalence of Strongyloides infection and to the investigation of the diagnostic test properties of stool examinations and serologic testing, using data from a survey of all Cambodian refugees who arrived in Montreal, Canada, during an 8-month period.
在人群筛查调查或新诊断测试的研究中,通常会有一项或多项针对同一病症或疾病的测试结果,其中没有一项可被视为金标准。例如,在基于人群的调查中,用于估计寄生虫或其他感染患病率的两种常用方法是粪便检查和血清学检测。然而,众所周知,粪便检查的结果通常会低估患病率,而血清学检测通常会导致高估。使用贝叶斯方法,可以同时推断人群患病率以及每种诊断测试的灵敏度、特异度、阳性预测值和阴性预测值。这里介绍的方法可以分别应用于每项测试,也可以应用于两项或更多项测试的组合。所有参数的边际后验密度使用吉布斯采样器进行估计。利用来自在8个月期间抵达加拿大蒙特利尔的所有柬埔寨难民调查的数据,将这些技术应用于粪类圆线虫感染患病率的估计以及粪便检查和血清学检测的诊断测试特性研究。