Suppr超能文献

alpha-Ketoacids scavenge H2O2 in vitro and in vivo and reduce menadione-induced DNA injury and cytotoxicity.

作者信息

Nath K A, Ngo E O, Hebbel R P, Croatt A J, Zhou B, Nutter L M

机构信息

Department of Medicine, University of Minnesota Medical School, Minneapolis 55455.

出版信息

Am J Physiol. 1995 Jan;268(1 Pt 1):C227-36. doi: 10.1152/ajpcell.1995.268.1.C227.

Abstract

We demonstrate that alpha-ketoacids reduce and, in some instances, abrogate menadione-induced DNA damage and cytotoxicity in the human breast cancer cell line, MCF7. We confirm that alpha-ketoacids quench the copious amounts of H2O2 generated by menadione while these alpha-ketoacids undergo nonenzymatic oxidative decarboxylation; our data thus support enhanced H2O2 production as an important pathway for menadione-induced DNA damage and cytotoxicity. We also demonstrate that alpha-ketoacids scavenge H2O2 generated by mitochondria and microsomes when these organelles are exposed to menadione; additionally, alpha-ketoacids protect oxidant-vulnerable enzymes against functional impairment induced by H2O2. Finally, we provide the first in vivo demonstration that acute elevations in concentrations of alpha-ketoacids in rat tissues and urine scavenge H2O2. We conclude that enhanced H2O2 production is a major pathway for menadione-induced DNA damage and cytotoxicity and that the diverse alpha-ketoacids present within the cell must be considered, along with glutathione peroxidase and catalase, as part of the intracellular antioxidant defense mechanisms that regulate the ambient levels of H2O2.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验