Zeldin D C, Wei S, Falck J R, Hammock B D, Snapper J R, Capdevila J H
Department of Medicine, Vanderbilt University Medical School, Nashville, Tennessee 37236.
Arch Biochem Biophys. 1995 Jan 10;316(1):443-51. doi: 10.1006/abbi.1995.1059.
The metabolism of cis-epoxyeicosatrienoic acids (EETs), methyl cis-epoxyeicosatrienoates, and cis-epoxyeicosanoic acids by cytosolic epoxide hydrolase was studied to identify substrate structural features important for stereoselective metabolism and chiral diol formation. 14(R), 15(S)-, 11(S),12(R)-, and 8(S),9(R)-EET, the predominant enantiomers present endogenously in rat organs, were metabolized at substantially higher rates than their antipodes. With the exception of 8(R),9(S)-EET (Km = 41 microM), differences in enantiomer hydration rates appear to be caused by Km-independent factors since the apparent Km values for the enantiomers of 14,15-, 11,12-, and 8(S),9(R)-EET were similar (between 3 and 5 microM). Chiral analysis of the diols resulting from enzymatic hydration of homochiral EETs showed that the regio and/or stereochemistry of water addition was EET regioisomer dependent. For the 11,12-EET enantiomers, water addition was nonregioselective; whereas, with both 8,9-EET antipodes water addition occurred predominantly at C9. Importantly, for 14,15-EET the regiochemistry of water addition was enantiomer-dependent. Only with 14(R),15(S)-EET did enzymatic hydration result in regiospecific addition at C15. Hence, enantioselective EET hydration is determined, principally, by enantiomer specific differences in rates of catalytic turnover and/or substrate binding parameters. On the other hand, the chirality of the diol products is determined by EET enantiomer-dependent differences in the regiochemistry of enzymatic oxirane cleavage and water addition. Esterification resulted in an overall reduction in the rates of epoxide hydration for all three EET-methyl esters (59, 89, and 68% of the EET rate for 8,9-, 11,12-, and 14,15-EET-methyl ester, respectively) and in the loss of regioselectivity during methyl 8(S),9(R)-EET oxirane cleavage. Catalytic EET hydrogenation reduced the rates of EET hydration (56, 45, and 23% of the EET rates for 8,9-, 11,12-, and 14,15-epoxyeicosanoic acids, respectively). Compared to 14,15-EET, enzyme catalyzed hydration of 14,15-epoxyeicosanoic acid was less regioselective and yielded products with a substantially lower chiral purity. Based on these data, as well as on the documentation of 14(R),15(R)-dihydroxyeicosatrienoic acid as an endogenous constituent of rat urine we concluded that: (1) cytosolic epoxide hydrolase plays a significant role in the regio- and stereoselective metabolism of endogenous EETs; (2) differences in the affinities and/or turnover rates of the enzyme for the individual EET antipodes may be responsible for enantioselective EET metabolism; and (3) for 14,15- and 8,9-EET, regioselective and/or enantioselective oxirane water addition is responsible for asymmetric diol formation.(ABSTRACT TRUNCATED AT 400 WORDS)
研究了胞质环氧化物水解酶对顺式环氧二十碳三烯酸(EETs)、甲基顺式环氧二十碳三烯酸酯和顺式环氧二十碳酸的代谢,以确定对立体选择性代谢和手性二醇形成重要的底物结构特征。14(R), 15(S)-、11(S),12(R)-和8(S),9(R)-EET是大鼠器官中内源性存在的主要对映体,它们的代谢速率远高于其对映体。除8(R),9(S)-EET(Km = 41 microM)外,对映体水合速率的差异似乎是由与Km无关的因素引起的,因为14,15-、11,12-和8(S),9(R)-EET对映体的表观Km值相似(在3至5 microM之间)。对同手性EETs酶促水合产生的二醇进行手性分析表明,水加成的区域和/或立体化学取决于EET区域异构体。对于11,12-EET对映体,水加成是非区域选择性的;而对于8,9-EET的两个对映体,水加成主要发生在C9位。重要的是,对于14,15-EET,水加成的区域化学是对映体依赖性的。只有14(R),15(S)-EET的酶促水合导致在C15位的区域特异性加成。因此,对映选择性EET水合主要由催化周转速率和/或底物结合参数的对映体特异性差异决定。另一方面,二醇产物的手性由EET对映体依赖性的环氧乙烷裂解和水加成区域化学差异决定。酯化导致所有三种EET-甲酯的环氧化物水合速率总体降低(8,9-、11,12-和14,15-EET-甲酯的水合速率分别为EET速率的59%、89%和68%),并且在8(S),9(R)-EET甲酯的环氧乙烷裂解过程中区域选择性丧失。催化EET氢化降低了EET水合速率(8,9-、11,12-和14,15-环氧二十碳酸的水合速率分别为EET速率的56%、45%和23%)。与14,15-EET相比,14,15-环氧二十碳酸的酶促水合区域选择性较低,产生的产物手性纯度明显较低。基于这些数据以及14(R),15(R)-二羟基二十碳三烯酸作为大鼠尿液内源性成分的文献记录,我们得出以下结论:(1) 胞质环氧化物水解酶在内源性EETs的区域和立体选择性代谢中起重要作用;(2) 酶对各个EET对映体的亲和力和/或周转速率差异可能是EET对映选择性代谢的原因;(3) 对于14,15-和8,9-EET,区域选择性和/或对映选择性环氧乙烷水加成是不对称二醇形成的原因。(摘要截断于400字)