Suppr超能文献

Unsupervised clustering of evoked potentials by waveform.

作者信息

Geva A B, Pratt H

机构信息

Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa.

出版信息

Med Biol Eng Comput. 1994 Sep;32(5):543-50. doi: 10.1007/BF02515313.

Abstract

A procedure for clustering evoked potentials (EPs) according to their waveforms is presented. Clustering is performed without a priori selection of basis waveforms, the number of basis waveforms or the number of clusters. The method uses the principal-component-analysis coefficients of EP records as features for unsupervised optimal fuzzy clustering (UOFC) of the records. The validity of the procedure is demonstrated in two instances: visual evoked potentials (VEPs) and cognitive event-related potentials (ERPs) from humans in a memory-scanning task. In the clustering of VEPs, the procedure differentiates between waveforms judged to be clinically normal and abnormal. In the clustering of ERPs, the procedure correctly differentiates between waveforms evoked by the same stimuli which differ in their context to the performance of a memory-scanning task (memorised items against probes). Within this classification, the procedure detects two subgroups to probe-evoked waveforms, which are not obvious from visual inspection of the waveforms. The advantage of the procedure, which conducts clustering by UOFC, is the adaptive and machine-learning nature of its operation.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验