Suppr超能文献

Vitread proliferation of filamentous processes in avian Müller cells and its putative functional correlates.

作者信息

Dreher Z, Distler C, Dreher B

机构信息

Department of Anatomy and Histology, University of Sydney, New South Wales, Australia.

出版信息

J Comp Neurol. 1994 Dec 1;350(1):96-108. doi: 10.1002/cne.903500107.

Abstract

In order to examine to what extent the neuronal and metabolic activities of avascular vertebrate retinae are reflected in the morphology of their Müller cells we have studied (by using several monoclonal antibodies) the morphology of Müller cells in two species of diurnal birds (chicken, Gallus domesticus, and pigeon, Columba livia) and one species of nocturnal saltwater crocodiles (Crocodylus porosi). In all three species, the outer nuclear layer is relatively thin and the Müller cell trunks divide into rootlets that wrap around the photoreceptors. In both diurnal birds studied, the trunks of Müller cells in the inner plexiform layers invariably divide into numerous fine filamentous processes that terminate in small expansions covering most of the vitreal surface of the retina. Furthermore, the networks of filamentous processes of birds' Müller cells exhibit conspicuous horizontal lamination in the inner plexiform layer. In contrast, the filamentous processes arising from the individual Müller cell trunks of the crocodile, if present, are much less numerous and less widely spread than those of diurnal birds. It is proposed that the splitting of the Müller cell trunks into numerous filamentous processes terminating in small vitreal expansions represents a morphological adaptation for: 1) effective spatial buffering of K+ ions in thick and presumably metabolically highly active, yet avascular, avian retinae, and 2) effective absorption and distribution of nutrients leaking from the vitreally located supplemental nutritive organ, the pecten.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验