Suppr超能文献

创伤性脑损伤后2年就业状况的预测。

Prediction of employment status 2 years after traumatic brain injury.

作者信息

Ponsford J L, Olver J H, Curran C, Ng K

机构信息

Bethesda Hospital, Melbourne, Australia.

出版信息

Brain Inj. 1995 Jan;9(1):11-20. doi: 10.3109/02699059509004566.

Abstract

The present study used a multivariate approach to investigate which of a range of variables relating to demographic factors, injury severity and degree of disability on admission to rehabilitation were the best predictors of employment status 2 years after traumatic brain injury (TBI). Subjects were 74 TBI patients who had been working prior to injury, had undergone rehabilitation at Bethesda Hospital and attended a review clinic 2 years after injury. A cross-validation sample consisted of a further 50 such subjects. Following preliminary analysis four input variables were selected: age under or over 40 at time of injury, Glasgow Coma Scale score on acute hospital admission, duration of post-traumatic amnesia and total score on the Disability Rating Scale (DRS) on admission to rehabilitation. Stepwise discriminant function analysis resulted in a discriminant function consisting of three variables--total score on the Disability Rating Scale, Glasgow Coma Scale Score and age--which correctly classified 74% of grouped cases. A second analysis using the original discriminant function correctly classified 68% of the cross-validation sample. Chi-square analysis showed no significant difference between these results, thus confirming these variables, in combination, as predictors of employment status 2 years after TBI.

摘要

本研究采用多变量方法,调查一系列与人口统计学因素、损伤严重程度以及康复入院时残疾程度相关的变量中,哪些是创伤性脑损伤(TBI)后2年就业状况的最佳预测指标。研究对象为74名TBI患者,他们在受伤前有工作,在贝塞斯达医院接受了康复治疗,并在受伤后2年参加了复查门诊。交叉验证样本由另外50名此类受试者组成。经过初步分析,选择了四个输入变量:受伤时年龄是否在40岁以下或以上、急性入院时的格拉斯哥昏迷量表评分、创伤后遗忘症持续时间以及康复入院时残疾评定量表(DRS)的总分。逐步判别函数分析得出一个由三个变量组成的判别函数——残疾评定量表总分、格拉斯哥昏迷量表评分和年龄——该函数正确分类了74%的分组病例。使用原始判别函数进行的第二次分析正确分类了68%的交叉验证样本。卡方分析表明这些结果之间没有显著差异,从而证实这些变量结合起来可作为TBI后2年就业状况的预测指标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验