Touray J C, Baillif P
ESEM, Université d'Orléans, Métallogénie et Matériaux Minéraux, France.
Environ Health Perspect. 1994 Oct;102 Suppl 5(Suppl 5):25-30. doi: 10.1289/ehp.94102s525.
Biopersistence is a function of different parameters: low solubility of the vitreous phase in physiological media, good mechanical properties of altered fibers, limited ability of phagocytosis to digest residual fragments. This article emphasizes solubility problems. From studies related to nuclear waste storage and other industrial problems, the mechanisms (formation of a leached layer of variable thickness and structure) and the kinetic laws describing the dissolution of vitreous fibers are now fairly well known. Appropriate methods depend only on the composition of the vitreous fibers that have to be chosen to determine intrinsic dissolution rates. All other parameters influencing the dissolution rate have to be fixed radius of the fibers, composition of the saline solution) or within a convenient range (flow-rate, s/v ratio). Alternatively, physicochemical parameters may be derived from a known relation (Arrhenius plot for T, kinetic equation for pH, geometrical equation for S). In spite of their widespread use, flow-through systems, in our opinion, give less precise kinetic results than large-volume closed systems with small s/v ratios (less than 0.5 cm-1). In closed and open systems, we suggest the use of two parameters for describing the dissolution rates at 37 degrees C: the initial rate constant, vo, and the time constant, k, for a rate decreasing at variable S.
玻璃相在生理介质中的低溶解度、变质纤维良好的机械性能、吞噬作用消化残留碎片的能力有限。本文着重讨论溶解度问题。从与核废料储存及其他工业问题相关的研究来看,玻璃纤维溶解的机制(形成厚度和结构各异的浸出层)以及描述其溶解的动力学规律如今已广为人知。合适的方法仅取决于为确定固有溶解速率而选择的玻璃纤维的组成。所有其他影响溶解速率的参数必须固定(纤维半径、盐溶液组成)或保持在适宜范围内(流速、固液比)。或者,物理化学参数可从已知关系中推导得出(温度的阿累尼乌斯图、pH的动力学方程、表面积的几何方程)。尽管流通系统应用广泛,但我们认为,与固液比小(小于0.5 cm-1)的大体积封闭系统相比,其给出的动力学结果精度更低。在封闭和开放系统中,我们建议使用两个参数来描述37摄氏度时的溶解速率:初始速率常数vo和在可变表面积S下速率降低时的时间常数k。