Sabbioni G
Institute of Pharmacology and Toxicology, University of Würzburg, Germany.
Environ Health Perspect. 1994 Oct;102 Suppl 6(Suppl 6):61-7. doi: 10.1289/ehp.94102s661.
N-Oxidation and nitroreduction to yield N-hydroxyarylamines are metabolic steps that are crucial for the genotoxic properties of aromatic amines and nitroarenes, respectively. N-Hydroxyarylamines can form adducts with DNA, tissue proteins, and the blood proteins albumin and hemoglobin in a dose-dependent manner. The determination of hemoglobin adducts is a useful tool for biomonitoring exposed populations. We have established the hemoglobin binding index (HBI) [(mmole compound/mole Hb)/(mmole compound/kg body weight)] of several aromatic amines and nitroarenes in female Wistar rats. Incorporating values obtained by other researchers in the same rat strain, the logarithm of hemoglobin binding (log HBI) was plotted against several physicochemical parameters and against calculated electronic descriptors of nitroarenes and arylamines. Most arylamines and nitroarenes form hydrolyzable (e.g., sulfinamide) adducts with hemoglobin in rats. The amount of hemoglobin binding decreases with the oxidizability of the arylamines, except for compounds that are substituted with halogens in ortho or meta position. For halogen-substituted arylamines, the amount of hemoglobin binding is directly proportional to the pKa. Hemoglobin binding of nitroarenes increases with the reducibility of the nitro group. The structure activity relationships (SAR) for hemoglobin binding of nitroarenes and arylamines are comparable. The SAR found for hemoglobin binding were compared with the SAR found in the literature for mutagenicity, carcinogenicity, and cytotoxicity of arylamines and nitroarenes. In general, the mutagenicity or carcinogenicity of arylamines increases with their oxidizability. This first set of data suggests that the levels of hemoglobin binding, mutagenicity, and carcinogenicity of arylamines are not determined by the same electronic properties of the compounds, or not by these properties alone.(ABSTRACT TRUNCATED AT 250 WORDS)
N-氧化和硝基还原生成N-羟基芳胺分别是芳香胺和硝基芳烃产生遗传毒性的关键代谢步骤。N-羟基芳胺能以剂量依赖的方式与DNA、组织蛋白以及血液中的白蛋白和血红蛋白形成加合物。测定血红蛋白加合物是生物监测暴露人群的一种有用工具。我们已经确定了几种芳香胺和硝基芳烃在雌性Wistar大鼠中的血红蛋白结合指数(HBI)[(毫摩尔化合物/摩尔血红蛋白)/(毫摩尔化合物/千克体重)]。结合其他研究人员在同一大鼠品系中获得的值,将血红蛋白结合的对数(log HBI)与几个物理化学参数以及硝基芳烃和芳胺的计算电子描述符进行了绘制。大多数芳胺和硝基芳烃在大鼠体内与血红蛋白形成可水解的(如亚磺酰胺)加合物。除了在邻位或间位被卤素取代的化合物外,血红蛋白结合量随芳胺的氧化能力降低而减少。对于卤素取代的芳胺,血红蛋白结合量与pKa成正比。硝基芳烃的血红蛋白结合量随硝基的还原能力增加而增加。硝基芳烃和芳胺血红蛋白结合的构效关系(SAR)具有可比性。将发现的血红蛋白结合的SAR与文献中芳胺和硝基芳烃的致突变性、致癌性和细胞毒性的SAR进行了比较。一般来说,芳胺的致突变性或致癌性随其氧化能力增加而增加。这第一组数据表明,芳胺的血红蛋白结合水平、致突变性和致癌性不是由化合物相同电子性质决定的,或者不仅仅由这些性质决定。(摘要截短至250字)