Suppr超能文献

宫颈涂片的神经网络处理可减少诊断变异性并提高筛查效率:一项对63例假阴性涂片的研究。

Neural network processing of cervical smears can lead to a decrease in diagnostic variability and an increase in screening efficacy: a study of 63 false-negative smears.

作者信息

Boon M E, Kok L P, Nygaard-Nielsen M, Holm K, Holund B

机构信息

Leiden Cytology and Pathology Laboratory, The Netherlands.

出版信息

Mod Pathol. 1994 Dec;7(9):957-61.

PMID:7892166
Abstract

A realistic approach for decreasing the number of erroneous diagnoses plaguing cervical cytology screening is to try to reduce the amount of nondiagnostic visual information. The neural network of PAPNET selects 128 cytological views from the routinely prepared smear which in digitized form can be displayed on a high-resolution videoscreen. From these 128 videotiles the abnormal ones can be selected by the diagnostician and brought together on the "summarizing videoscreen" containing 16 tiles. Thus, the diagnostic information can be further condensed. This facilitates the proper interpretation of the diagnostic cell material dispersed over the smear. A series of 63 false-negative smears were rescreened twice conventionally and twice using the PAPNET-assisted method. We found that, using PAPNET, the screening efficacy increased and the diagnostic variability decreased. The PAPNET in particular proved to be superior for smears containing few abnormal cells and cases of malignancies of the reserve cell lineage.

摘要

减少困扰宫颈细胞学筛查的错误诊断数量的一种现实方法是尝试减少非诊断性视觉信息的数量。PAPNET神经网络从常规制备的涂片上选择128个细胞学视野,这些视野以数字化形式可显示在高分辨率视频屏幕上。诊断医生可以从这128个视频片中选出异常的,并汇总到包含16个视频片的“汇总视频屏幕”上。这样,诊断信息可以进一步浓缩。这有助于正确解读分散在涂片上的诊断性细胞材料。对一系列63例假阴性涂片进行了两次常规复查,并使用PAPNET辅助方法复查了两次。我们发现,使用PAPNET后,筛查效率提高,诊断变异性降低。事实证明,PAPNET对于含有少量异常细胞的涂片以及储备细胞系恶性肿瘤病例尤为优越。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验