Suppr超能文献

细胞骨架对基因表达的调控:微管解聚激活核因子-κB。

Cytoskeletal control of gene expression: depolymerization of microtubules activates NF-kappa B.

作者信息

Rosette C, Karin M

机构信息

Department of Pharmacology, School of Medicine, University of California at San Diego, La Jolla 92093-0636.

出版信息

J Cell Biol. 1995 Mar;128(6):1111-9. doi: 10.1083/jcb.128.6.1111.

Abstract

Cell shape changes exert specific effects on gene expression. It has been speculated that the cytoskeleton is responsible for converting changes in the cytoarchitecture to effects on gene transcription. However, the signal transduction pathways responsible for cytoskeletal-nuclear communication remained unknown. We now provide evidence that a variety of agents and conditions that depolymerize microtubules activate the sequence-specific transcription factor NF-kappa B and induce NF kappa B-dependent gene expression. These effects are caused by depolymerization of microtubule because they are blocked by the microtubule-stabilizing agent taxol. In nonstimulated cells, the majority of NF-kappa B resides in the cytosplasm as a complex with its inhibitor I kappa B. Upon cell stimulation, NF-kappa B translocates to the nucleus with concomitant degradation of I kappa B. We show that cold-induced depolymerization of microtubules also leads to I kappa B degradation and activation of NF-kappa B. However, the activated factor remains in the cytoplasm and translocates to the nucleus only upon warming to 37 degrees C, thus revealing two distinct steps in NF-kappa B activation. These findings establish a new role for NF-kappa B in sensing changes in the state of the cytoskeleton and converting them to changes in gene activity.

摘要

细胞形状的改变对基因表达产生特定影响。据推测,细胞骨架负责将细胞结构的变化转化为对基因转录的影响。然而,负责细胞骨架与细胞核通讯的信号转导途径仍不清楚。我们现在提供证据表明,多种使微管解聚的因子和条件可激活序列特异性转录因子NF-κB并诱导NF-κB依赖的基因表达。这些效应是由微管解聚引起的,因为它们被微管稳定剂紫杉醇所阻断。在未受刺激的细胞中,大多数NF-κB以与其抑制剂IκB形成的复合物形式存在于细胞质中。细胞受到刺激后,NF-κB易位至细胞核,同时IκB降解。我们发现,冷诱导的微管解聚也会导致IκB降解和NF-κB激活。然而,激活的因子仍留在细胞质中,只有在升温至37℃时才易位至细胞核,从而揭示了NF-κB激活过程中的两个不同步骤。这些发现确立了NF-κB在感知细胞骨架状态变化并将其转化为基因活性变化方面的新作用。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验