Suppr超能文献

The structural basis for the altered substrate specificity of the R292D active site mutant of aspartate aminotransferase from E. coli.

作者信息

Almo S C, Smith D L, Danishefsky A T, Ringe D

机构信息

Department of Chemistry, Massachusetts Institute of Technology, Cambridge 02139.

出版信息

Protein Eng. 1994 Mar;7(3):405-12. doi: 10.1093/protein/7.3.405.

Abstract

Two refined crystal structures of aspartate aminotransferase from E. coli are reported. The wild type enzyme is in the pyridoxal phosphate (PLP) form and its structure has been determined to 2.4 A resolution, refined to an R-factor of 23.2%. The structure of the Arg292Asp mutant has been determined at 2.8 A resolution, refined to an R-factor of 20.3%. The wild type and mutant crystals are isomorphous and the two structures are very similar, with only minor changes in positions of important active site residues. As residue Arg292 is primarily responsible for the substrate charge specificity in the wild type enzyme, the mutant containing a charge reversal at this position might be expected to catalyze transamination of arginine as efficiently as the wild type enzyme effects transamination of aspartate [Cronin, C.N. and Kirsch, J.F. (1988) Biochemistry, 27, 4572-4579]. This mutant does in fact prefer arginine over aspartate as a substrate, however, the rate of catalysis is much slower than that of the wild type enzyme with its physiological substrate, aspartate. A comparison of these two structures indicates that the poorer catalytic efficiency of R292D, when presented with arginine, is not due to a gross conformational difference, but is rather a consequence of both small side chain and main chain reorientations and the pre-existing active site polar environment, which greatly favors the wild type ion pair interaction.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验