Suppr超能文献

来自纤维单胞菌的β-1,4-聚糖酶cex催化结构域的晶体结构

Crystal structure of the catalytic domain of the beta-1,4-glycanase cex from Cellulomonas fimi.

作者信息

White A, Withers S G, Gilkes N R, Rose D R

机构信息

Protein Engineering Network of Centres of Excellence, Ontario Cancer Institute, University of Toronto, Canada.

出版信息

Biochemistry. 1994 Oct 25;33(42):12546-52. doi: 10.1021/bi00208a003.

Abstract

beta-1,4-Glycanases, principally cellulases and xylanases, are responsible for the hydrolysis of plant biomass. The bifunctional beta-1,4-xylanase/glucanase Cex from the bacterium Cellulomonas fimi, one of a large family of cellulases/xylanases, depolymerizes oligosaccharides and releases a disaccharide unit from the substrate nonreducing end. Hydrolysis occurs with net retention of the anomeric configuration of the sugar through a double-displacement mechanism involving a covalent glycosyl-enzyme intermediate. The active site nucleophile, Glu233, has been unambiguously identified by trapping of such an intermediate [Tull et al. (1991) J. Biol. Chem. 266, 15621-15625] and the acid/base catalyst, Glu127, by detailed kinetic analysis of mutants [MacLeod et al. (1994) Biochemistry 33, 6371-6376]. However, little is known about the enzyme's overall folding and its active site architecture. We report here the high-resolution crystal structure of the catalytic domain of Cex. The atomic structure refinement results in a model that includes 2400 protein atoms and 45 water molecules, with an R-factor of 0.217 for data extending to 1.8-A resolution. The protein forms an eight-parallel-stranded alpha/beta-barrel, which is a novel folding pattern for a microbial beta-glycanase. The active site, inferred from the location of Glu233, Glu127, and other conserved residues, is an open cleft on the carboxy-terminal end of the alpha/beta-barrel. An extensive hydrogen-bonding network stabilizes the ionization states of the key residues; in particular, the Asp235-His205-Glu233 hydrogen-bonding network may play a role in modulating the ionization state of Glu233 and in controlling local charge balance during the reaction.

摘要

β-1,4-聚糖酶,主要是纤维素酶和木聚糖酶,负责植物生物质的水解。来自纤维单胞菌的双功能β-1,4-木聚糖酶/葡聚糖酶Cex是纤维素酶/木聚糖酶大家族中的一员,它能使寡糖解聚,并从底物的非还原端释放出一个二糖单元。水解反应通过涉及共价糖基 - 酶中间体的双置换机制,使糖的异头构型净保留。活性位点亲核试剂Glu233已通过捕获这样的中间体明确鉴定[塔尔等人(1991年)《生物化学杂志》266卷,15621 - 15625页],而酸碱催化剂Glu127则通过对突变体的详细动力学分析确定[麦克劳德等人(1994年)《生物化学》33卷,6371 - 6376页]。然而,关于该酶的整体折叠及其活性位点结构却知之甚少。我们在此报告Cex催化结构域的高分辨率晶体结构。原子结构精修得到一个包含2400个蛋白质原子和45个水分子的模型,对于分辨率延伸至1.8埃的数据,其R因子为0.217。该蛋白质形成一个八股平行的α/β桶状结构,这是微生物β-聚糖酶的一种新型折叠模式。从Glu233、Glu127和其他保守残基的位置推断,活性位点是α/β桶状结构羧基末端的一个开放裂隙。广泛的氢键网络稳定了关键残基的电离状态;特别是,Asp235 - His205 - Glu233氢键网络可能在调节Glu233的电离状态以及控制反应过程中的局部电荷平衡方面发挥作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验