Notenboom V, Birsan C, Warren R A, Withers S G, Rose D R
Protein Engineering Network of Centres of Excellence, Ontario Cancer Institute, University of Toronto, Toronto, Canada.
Biochemistry. 1998 Apr 7;37(14):4751-8. doi: 10.1021/bi9729211.
The retaining beta-1,4-glycanase Cex from Cellulomonas fimi, a family 10 glycosyl hydrolase, hydrolyzes xylan 40-fold more efficiently than cellulose. To gain insight into the nature of its preference for xylan, we determined the crystal structure of the Cex catalytic domain (Cex-cd) trapped as its covalent 2-deoxy-2-fluoroxylobiosyl-enzyme intermediate to 1.9 A resolution. Together with the crystal structure of unliganded Cex-cd [White, A., et al. (1994) Biochemistry 33, 12546-12552] and the previously determined crystal structure of the covalent 2-deoxy-2-fluorocellobiosyl-Cex-cd intermediate [White, A., et al. (1996) Nat. Struct. Biol. 3, 149-154], this structure provides a convincing rationale for the observed substrate specificity in Cex. Two active site residues, Gln87 and Trp281, are found to sterically hinder the binding of glucosides and must rearrange to accommodate these substrates. Such rearrangements are not necessary for the binding of xylobiosides. The importance of this observation was tested by examining the catalytic behavior of the enzyme with Gln87 mutated to Met. This mutation had no measurable effect on substrate affinity or turnover number relative to the wild type enzyme, indicating that the Met side chain could accommodate the glucoside moiety as effectively as the wild type Gln residue. Subsequent mutagenesis studies will address the role of entropic versus enthalpic contributions to binding by introducing side chains that might be more rigid in the unliganded enzyme.
来自纤维单胞菌的保留型β-1,4-聚糖酶Cex属于10家族糖基水解酶,其水解木聚糖的效率比纤维素高40倍。为深入了解其对木聚糖偏好的本质,我们测定了以其共价2-脱氧-2-氟木二糖基-酶中间体形式捕获的Cex催化结构域(Cex-cd)的晶体结构,分辨率达到1.9 Å。结合未结合配体的Cex-cd的晶体结构[怀特,A.等人(1994年)《生物化学》33卷,12546 - 12552页]以及先前测定的共价2-脱氧-2-氟纤维二糖基-Cex-cd中间体的晶体结构[怀特,A.等人(1996年)《自然结构生物学》3卷,149 - 154页],该结构为Cex中观察到的底物特异性提供了令人信服的理论依据。发现两个活性位点残基Gln87和Trp281在空间上阻碍了葡萄糖苷的结合,必须重新排列以容纳这些底物。而对于木二糖苷的结合,这种重新排列并非必要。通过研究将Gln87突变为Met的酶的催化行为,对这一观察结果的重要性进行了测试。相对于野生型酶,这种突变对底物亲和力或周转数没有可测量的影响,表明Met侧链能够像野生型Gln残基一样有效地容纳葡萄糖苷部分。后续的诱变研究将通过引入在未结合配体的酶中可能更刚性的侧链来探讨熵与焓对结合贡献的作用。