Charnock S J, Spurway T D, Xie H, Beylot M H, Virden R, Warren R A, Hazlewood G P, Gilbert H J
Department of Biological and Nutritional Sciences, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, United Kingdom.
J Biol Chem. 1998 Nov 27;273(48):32187-99. doi: 10.1074/jbc.273.48.32187.
The crystal structures of family 10 xylanases indicate that the distal regions of their active sites are quite different, suggesting that the topology of the substrate binding clefts of these enzymes may vary. To test this hypothesis, we have investigated the rate and pattern of xylooligosaccharide cleavage by the family 10 enzymes, Pseudomonas fluorescens subsp. cellulosa xylanase A (XYLA) and Cellulomonas fimi exoglucanase, Cex. The data showed that Cex contained three glycone and two aglycone binding sites, while XYLA had three glycone and four aglycone binding sites, supporting the view that the topologies of substrate binding clefts in family 10 glycanases are not highly conserved. The importance of residues in the substrate binding cleft of XYLA in catalysis and ligand binding were evaluated using site-directed mutagenesis. In addition to providing insight into the function of residues in the glycone region of the active site, the data showed that the aromatic residues Phe-181, Tyr-255, and Tyr-220 play important roles in binding xylose moieties, via hydrophobic interactions, at subsites +1, +3, and +4, respectively. Interestingly, the F181A mutation caused a much larger reduction in the activity of the enzyme against xylooligosaccharides compared with xylan. These data, in conjunction with a previous study (Charnock, S. J., Lakey, J. H., Virden, R., Hughes, N., Sinnott, M. L., Hazlewood, G. P., Pickersgill, R., and Gilbert, H. J. (1997) J. Biol. Chem. 272, 2942-2951), suggest that the binding of xylooligosaccharides at the -2 and +1 subsites ensures that the substrates occupy the -1 and +1 subsites and thus preferentially form productive complexes with the enzyme. Loss of ligand binding at either subsite results in small substrates forming nonproductive complexes with XYLA by binding to distal regions of the substrate binding cleft.
10 家族木聚糖酶的晶体结构表明,其活性位点的远端区域差异很大,这表明这些酶的底物结合裂隙的拓扑结构可能有所不同。为了验证这一假设,我们研究了 10 家族酶,即荧光假单胞菌纤维素亚种木聚糖酶 A(XYLA)和纤维单胞菌外切葡聚糖酶 Cex 对木寡糖的切割速率和模式。数据显示,Cex 含有三个糖基结合位点和两个苷元结合位点,而 XYLA 有三个糖基结合位点和四个苷元结合位点,这支持了 10 家族聚糖酶中底物结合裂隙的拓扑结构并非高度保守的观点。利用定点诱变评估了 XYLA 底物结合裂隙中残基在催化和配体结合中的重要性。除了深入了解活性位点糖基区域中残基的功能外,数据还表明,芳香族残基苯丙氨酸 -181、酪氨酸 -255 和酪氨酸 -220 分别通过疏水相互作用在亚位点 +1、+3 和 +4 结合木糖部分时发挥重要作用。有趣的是,与木聚糖相比,F181A 突变导致该酶对木寡糖的活性降低幅度更大。这些数据与之前的一项研究(Charnock, S. J., Lakey, J. H., Virden, R., Hughes, N., Sinnott, M. L., Hazlewood, G. P., Pickersgill, R., and Gilbert, H. J. (1997) J. Biol. Chem. 272, 2942 - 2951)共同表明,木寡糖在 -2 和 +1 亚位点的结合确保底物占据 -1 和 +1 亚位点,从而优先与酶形成有活性的复合物。任一亚位点配体结合的丧失都会导致小底物通过与底物结合裂隙的远端区域结合而与 XYLA 形成无活性的复合物。