Suppr超能文献

Harvey ras (H-ras) point mutations are induced by 4-nitroquinoline-1-oxide in murine oral squamous epithelia, while squamous cell carcinomas and loss of heterozygosity occur without additional exposure.

作者信息

Yuan B, Heniford B W, Ackermann D M, Hawkins B L, Hendler F J

机构信息

Department of Biochemistry, Henry Vogt Research Institute of the James Graham Brown Cancer Center, University of Louisville, Kentucky.

出版信息

Cancer Res. 1994 Oct 15;54(20):5310-7.

PMID:7923158
Abstract

Tumorigenesis is a multistep genetic process requiring several somatic mutations for neoplastic transformation. These mutations appear to be sequential, random, and independent events. However, we find linked, nonrandom ras mutations occurring during 4-nitroquinoline-1-oxide-induced tumorigenesis months after exposure to the carcinogen had ceased. The carcinogen had been topically applied to the oral cavity of CBA mice for 4 to 16 weeks. Dysplasia developed after 24 weeks, and carcinoma in situ and squamous cell carcinoma developed after 28 weeks. H-ras mutations were detected in 13 of 25 tissue specimens (10 of 14 invasive carcinomas and 2 of 4 carcinoma in situ, 1 of 5 dysplastic tissue, and 0 of 2 normal tissues). Approximately one-half of the tumors had G to A point mutations at codon 12 of the cellular H-ras proto-oncogene on mouse chromosome 7. None had codon 11, 13, or 61 mutations. Loss of heterozygosity occurred in 5 of 14 invasive cancers. Larger invasive squamous cell carcinomas consistently lost the wild-type allele, whereas preneoplastic lesions and small tumors were heterozygous for ras. This suggests a causal relationship between carcinogen treatment, H-ras activation, and initiation of tumorigenesis. The wild-type allele in mouse chromosome 7 is lost with the progression of tumorigenesis long after exposure to the carcinogen. Thus, loss of heterozygosity of the ras gene appears to occur without multiple carcinogen-induced mutations, i.e., as a result of a cascade of events induced by an earlier ras mutation.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验